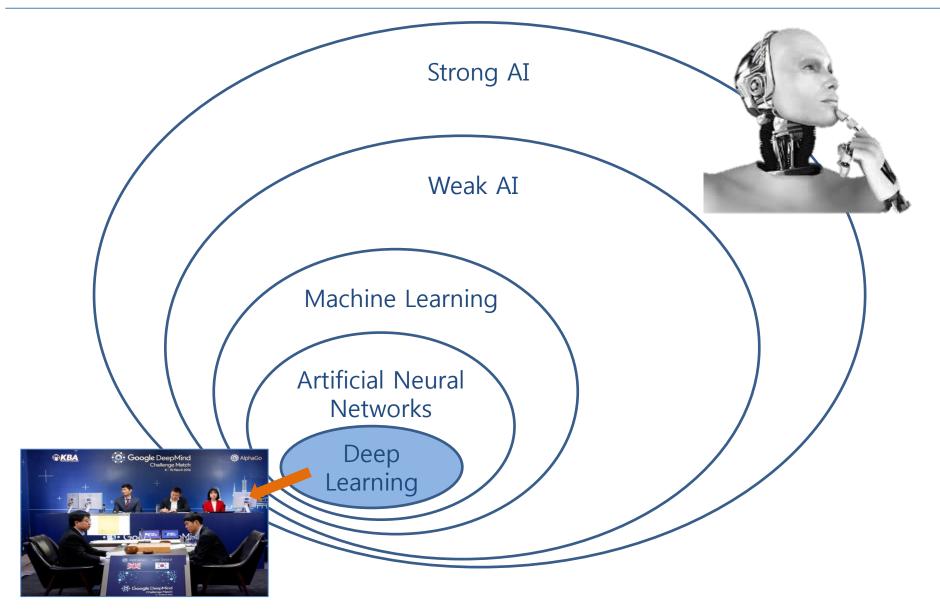
Development of Deep Learning & Attitude of Sharing


Jooyoul Lee LG CNS

Agenda

- 1. Deep Learning overview
- 2. Why is Deep Learning growing so fast?
- 3. Deep Learning Tools & Open Source
- 4. Wrap-Up

1. Deep Learning overview

AI, Machine Learning, Deep Learning

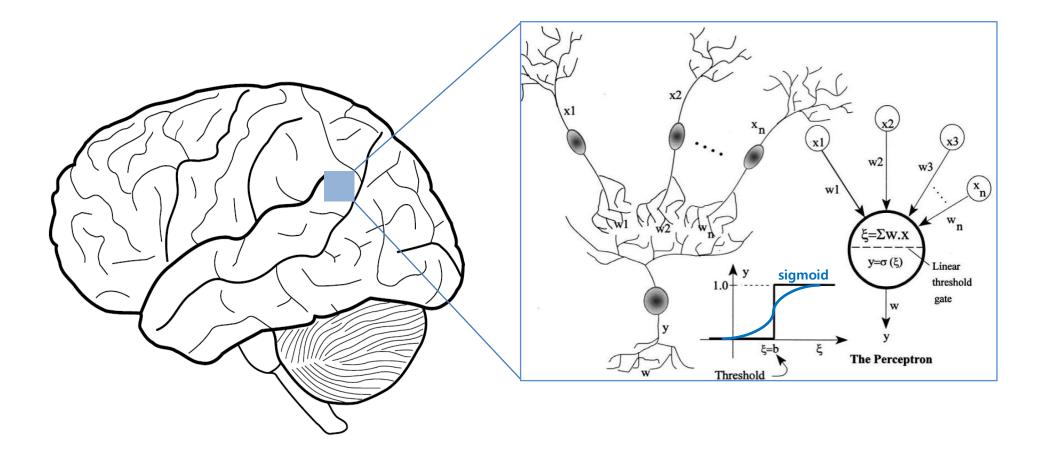
• Machine Learning Algorithms

<u>Unsupervised</u>

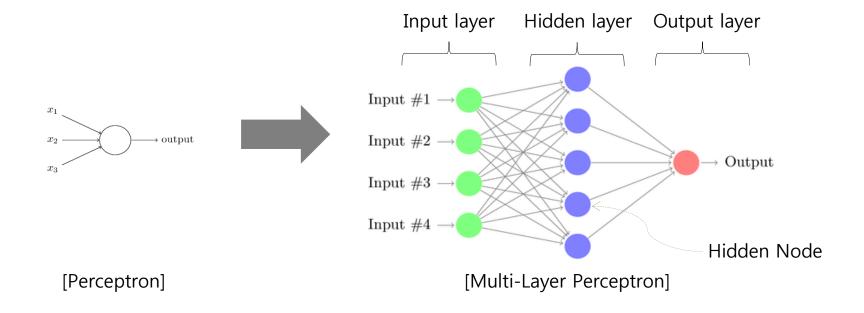
- Clustering & Dimensionality reduction
 - K-means
 - LDA(Latent Dirichlet Allocation)
 - SVD(Singular Value Decomposition)
 - PCA(Principal Component Analysis)

Supervised

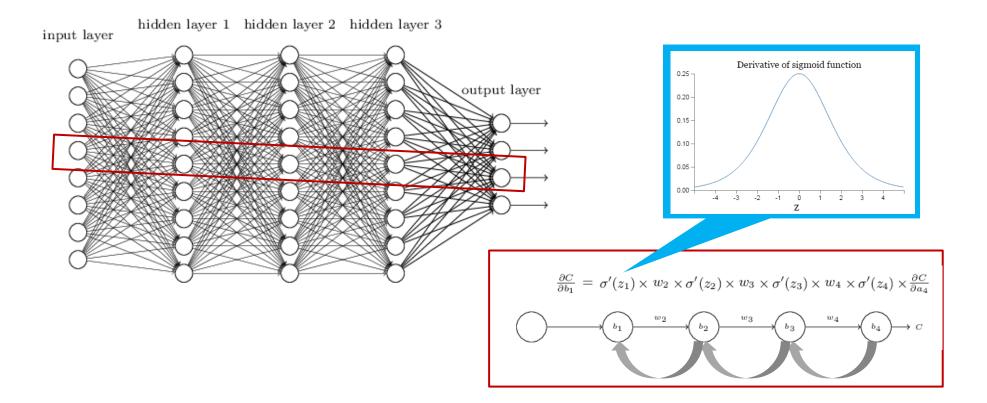
- Regression
 - Liner
 - Polynomial
- Decision Tree
- Random Forests
- Artificial Neural Networks


- Gaussian Mixture
- HMM(Hidden Markov Model)

- Classification
 - Logistic Regression
 - Naïve-Bayes
 - SVM(Support Vector Machine)

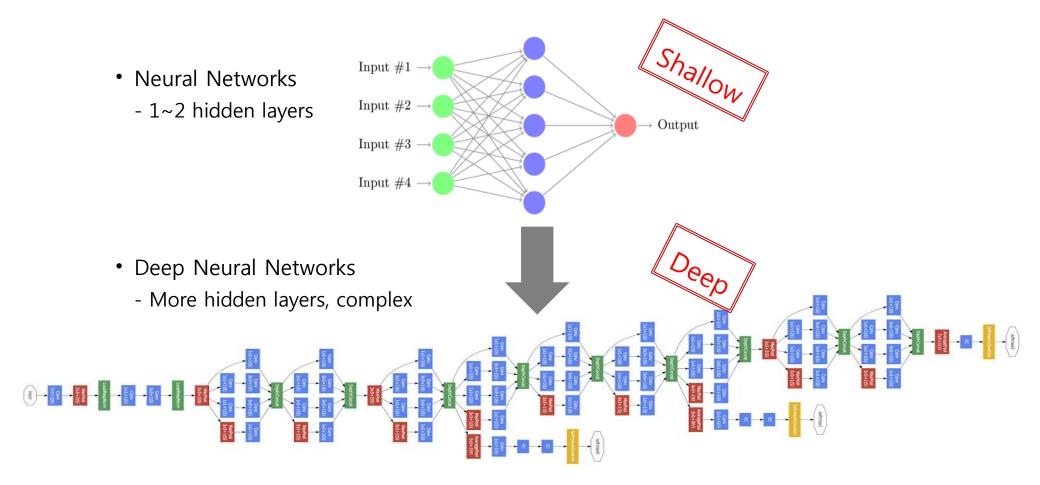

Continuous

<u>ategorical</u>

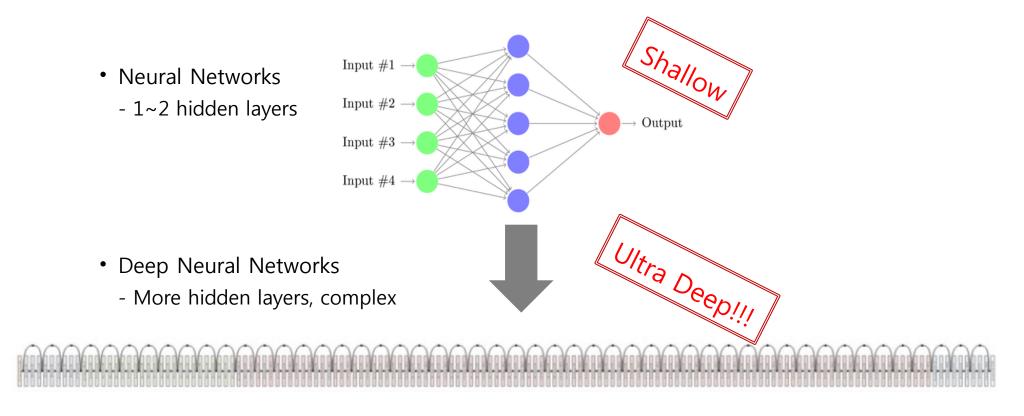

• Artificial Neural Networks (ANN)

• More hidden layer, more powerful

But, More hidden layer, hard to train!
 →Why? The vanishing gradient problem & so on...

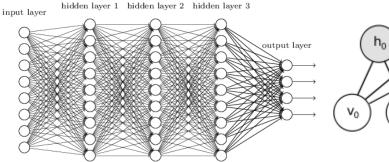


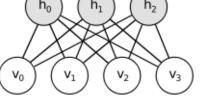
• Breakthrough!

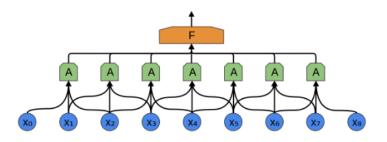


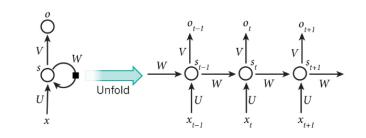
- Hinton, Osindero & Teh « <u>A Fast Learning</u> <u>Algorithm for Deep</u> <u>Belief Nets</u> », Neural Computation, 2006
- Bengio, Lamblin, Popovici, Larochelle « <u>Greedy Layer-Wise</u> <u>Training of Deep</u> <u>Networks</u> », *NIPS'2006*
- Ranzato, Poultney, Chopra, LeCun
 « Efficient Learning of Sparse Representations with an Energy-Based Model », NIPS'2006

Deep Neural Networks + Machine Learning = Deep Learning




Deep Neural Networks + Machine Learning = Deep Learning




Deep Neural Networks + Machine Learning = Deep Learning

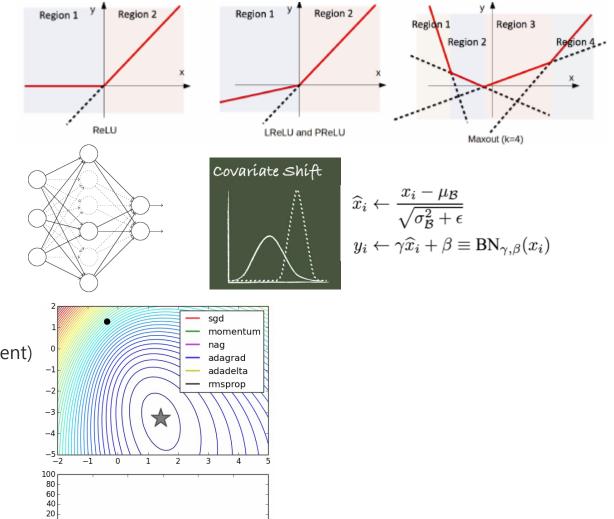
- Fully-Connected / Undirected
 - DNN(Deep Neural Networks)
 - RBM(Restricted Boltzmann Machine)
 - DBN(Deep Belief Network)
- Convolutional
 - LeNet
 - AlexNet, VGGNet
 - GoogleNet
 - ResNet
- Recurrent
 - LSTM(Long Short-Term Memory)
 - GRU(Gated Recurrent Unit)
 - Memory Networks

Deep Neural Networks + Machine Learning = Deep Learning

01

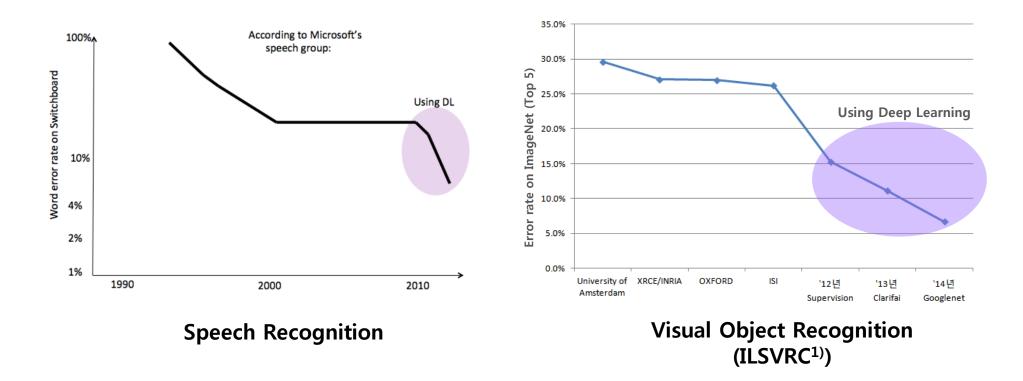
20

40


60

80

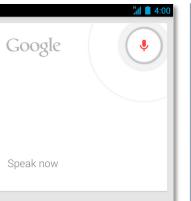
100


120

- Activation Function
 - ReLU(Rectified Linear Units)
 - Leaky ReLU
 - Maxout
- Regularization
 - Drop-Out
 - Batch Normalization
- Optimization
 - SGD(Stochastic Gradient Descent)
 - AdaGrad
 - RMSprop
 - Adam

1.3 Why Deep Learning?

• The state-of-the-art in speech recognition, visual object recognition

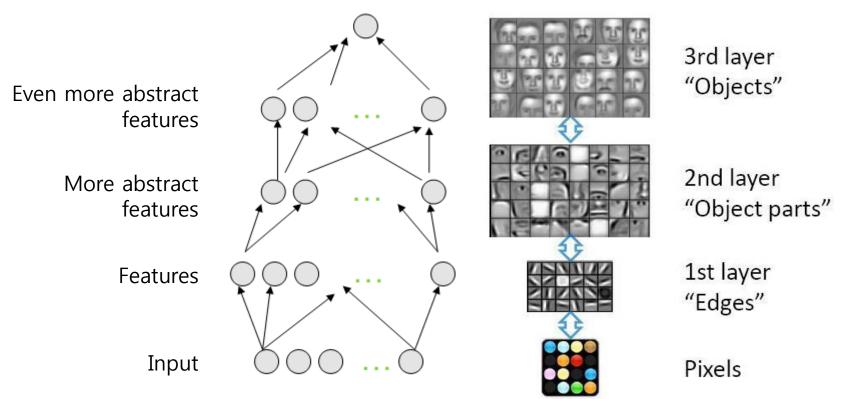


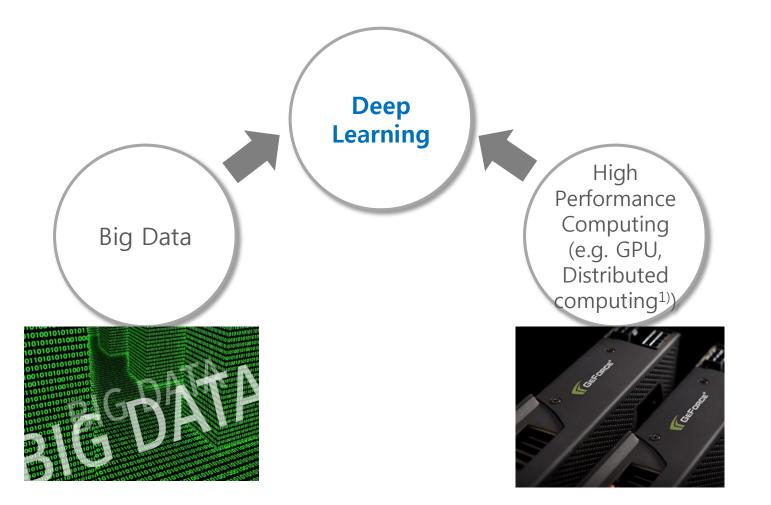
¹⁾ ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

1.3 Why Deep Learning?

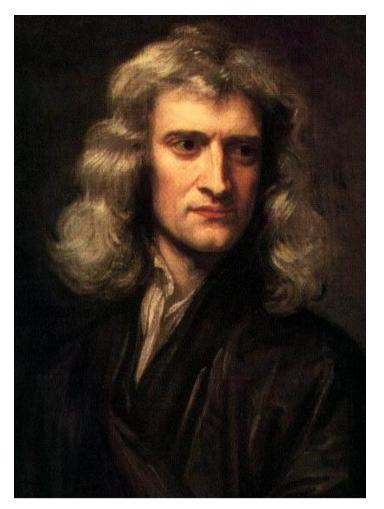
• Deep Learning Everywhere

Hi, how can I help?



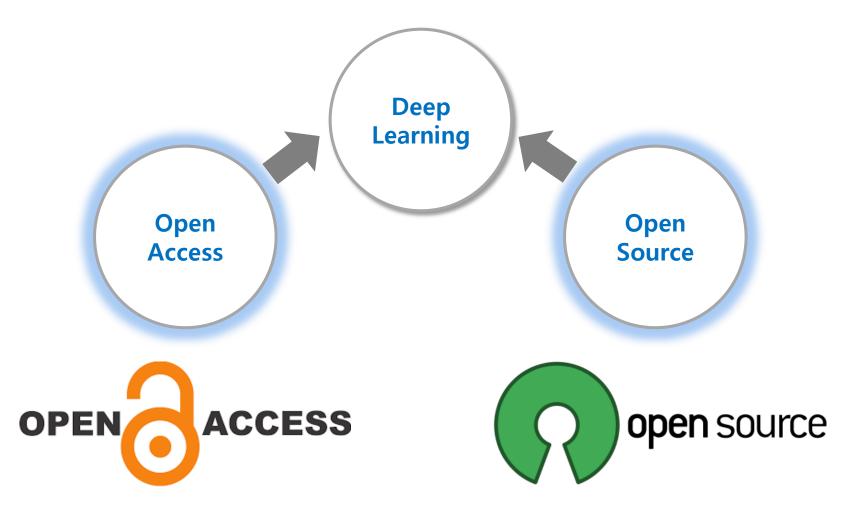

1.3 Why Deep Learning?

- Why is Deep Learning working so well?
 - → Learning multiple levels of representation/abstraction



Output

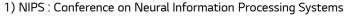
• Big Data & High Performance Computing(HPC)


• The shoulders of giants

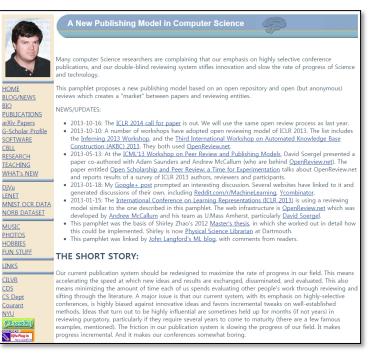
"If I have seen further than others, it is by standing Upon the shoulders of giants."

– Issac Newton

• Open Access & Open Source

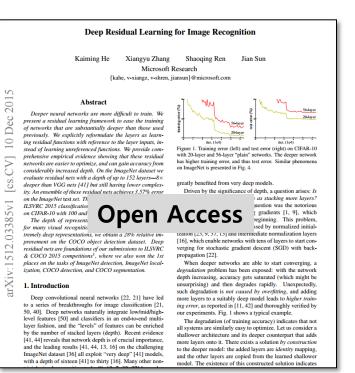

2.2 Open Access

• "Open access refers to online research outputs that are <u>free of all restrictions on access</u> (e.g. access tolls) and <u>free of many restrictions on use</u> (e.g. certain copyright and license restrictions)."_from Wikipedia



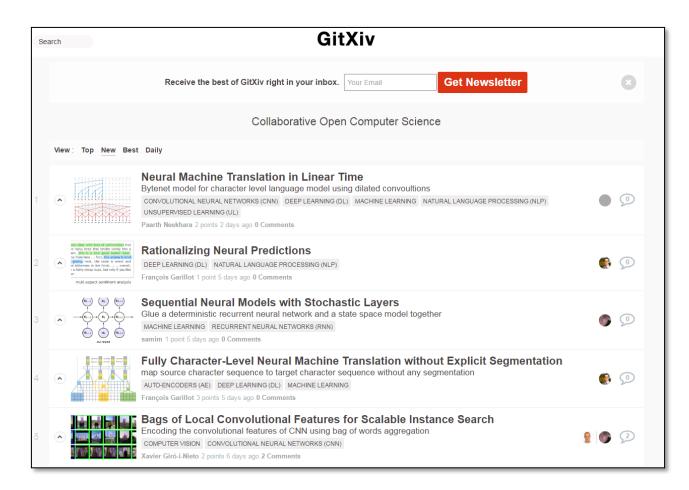
2.2 Open Access

- arXiv.org : repository of e-prints of scientific papers
 - Open access to e-prints in Physics, Mathematics, **Computer Science**, Quantitative Biology, Quantitative Finance and Statistics
 - Many Deep Learning researchers submit papers
 - So, you can find NIPS, ICML, ICLR¹⁾ papers at arXiv.org

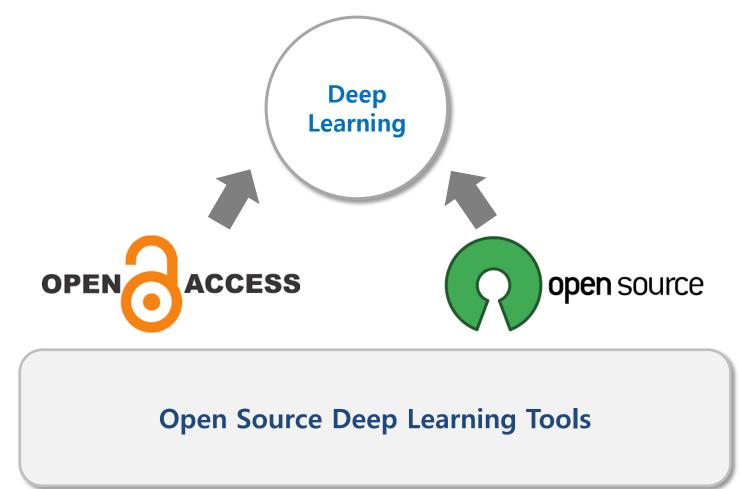

ICML : International Conference on Machine Learning

ICLR : International Conference on Learning Representation

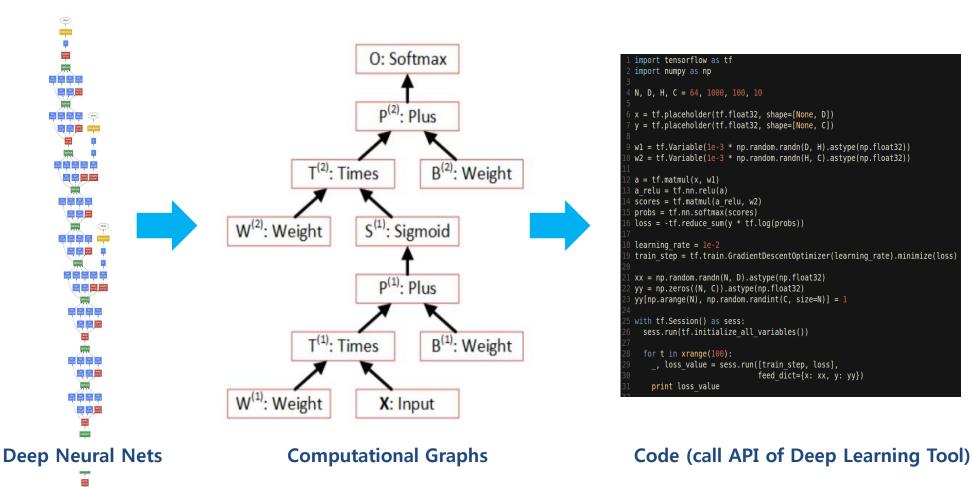
2.3 Open Source


- GitHub : a web-based Git repository hosting service
 - Many Deep Learning researchers open the algorithm implementation codes
 - The codes are mainly released under BSD, MIT, Apache license

	ep-residual	-networks			• Watch	• 140	\star Star	1,414	¥ Fork 53
<>Code ① Issue	es 15 👔	Pull requests 2	Projects 0 📰 Wiki	4- Pulse	III Graphs				
eep Residual Learn	ing for Imag	e Recognition							
36 commits		u 1 branch	\bigcirc 0 releases		🞎 6 contrib	utors		aţa N	TIN
Branch: master 💌 🛛 No	ew pull request			Create	new file U	oload files	Find file	Clone	e or download 🔻
📫 KaimingHe commi	tted on GitHub	Update README.md					Latest o	ommit a7	026cb on 30 Ju
acaffe @ b590f1d		add submodule o	f caffe version at 2016/2/3						9 months ago
prototxt		prototxt							9 months ago
gitmodules		add submodule o	f caffe version at 2016/2/3						9 months ago
		Initial commit							9 months ago
README.md		Update README.	nd						3 months ago
FE README.md		-	_						
		0	pen S	OUI	rce				
			-	U					
) t - l	al Networ	ks						
Deep F	kesidu								
By Kaiming H	e, Xiangyu Zł	hang, Shaoqing Ren,							
	e, Xiangyu Zł	hang, Shaoqing Ren,							
By Kaiming H	e, Xiangyu Zł earch Asia (N	hang, Shaoqing Ren,							
By Kaiming H	e, Xiangyu Zł earch Asia (N ontents	hang, Shaoqing Ren,							
By Kaiming H Microsoft Res Table of Co	e, Xiangyu Zł earch Asia (N ontents	hang, Shaoqing Ren,							
By Kaiming H Microsoft Res Table of Co 1. Introduct 2. Citation	e, Xiangyu Zł earch Asia (N ontents	hang, Shaoqing Ren, /ISRA).							
By Kaiming H Microsoft Res Table of Co 1. Introduct 2. Citation	e, Xiangyu Zł earch Asia (N ontents cion	hang, Shaoqing Ren, /ISRA).							
By Kaiming H Microsoft Res Table of Co 1. Introduct 2. Citation 3. Disclaime	e, Xiangyu Zł earch Asia (N ontents cion	hang, Shaoqing Ren, /ISRA).							


2.4 GitHub + arXiv

• GitXiv.com : a space to share collaborative open computer science projects


3. Deep Learning Tools & Open Source

• Remind "The shoulders of giants"

• Implement a deep neural networks

5m 30-22

• So many Open Source Deep Learning Tools

- Caffe : Convolutional Architecture for Fast Feature Embedding
 - From U.C. Berkeley, BSD 2-Clause license, Written in C++
 - Pros and Cons¹⁾ :
 - (+) Good for feedforward networks and image processing
 - (+) Good for finetuning existing networks
 - (+) Train models without writing any code
 - (+) Python interface is pretty useful
 - (-) Need to write C++ / CUDA for new GPU layers
 - (-) Not good for recurrent neural networks
 - (-) Not extensible, bit of a hairball

¹⁾ Stanford CS231n Andrej Karpathy, https://deeplearning4j.org/compare-dl4j-torch7-pylearn#caffe

- Torch
 - From NYU, BSD license, Written in C/C++, Lua
 - Used a lot in Facebook and DeepMind
 - Pros and $\mathsf{Cons}^{1)}$:

(+) Lots of modular pieces that are easy to combine

(+) Easy to write your own layer types and run on GPU

- (+) Lots of pre-trained models
- (-) Lua
- (-) You usually write your own training code (Less plug and play)

¹⁾ Stanford CS231n Andrej Karpathy, https://deeplearning4j.org/compare-dl4j-torch7-pylearn#torch

- Theano
 - From University of Montreal, Written in Python
 - High-level wrappers: Keras, Lasagne
 - Pros and $\mathsf{Cons}^{1)}$:
 - (+) Python + Numpy
 - (+) Computational graph is nice abstraction
 - (+) RNNs fit nicely in computational graph
 - (-) Hard to navigate, debug, refactor
 - (-) Large models can have long compile times
 - (-) Not enough pre-trained models

¹⁾ Stanford CS231n Andrej Karpathy, https://deeplearning4j.org/compare-dl4j-torch7-pylearn#theano

- TensorFlow
 - From Google, Apache 2.0 license, Written in C++, Python
 - Very similar to Theano
 - Pros and Cons¹⁾ :
 - (+) Python + Numpy
 - (+) Computational graph abstraction, like Theano
 - (+) Easy Visualizations
 - (+) Multi-node training
 - (-) Hard to hack into the networks
 - (-) Training time is slower than others right now
 - (-) Not enough pre-trained models (but it will get better)

¹⁾ Stanford CS231n Andrej Karpathy, https://deeplearning4j.org/compare-dl4j-torch7-pylearn#tensorflow

• Overview¹⁾

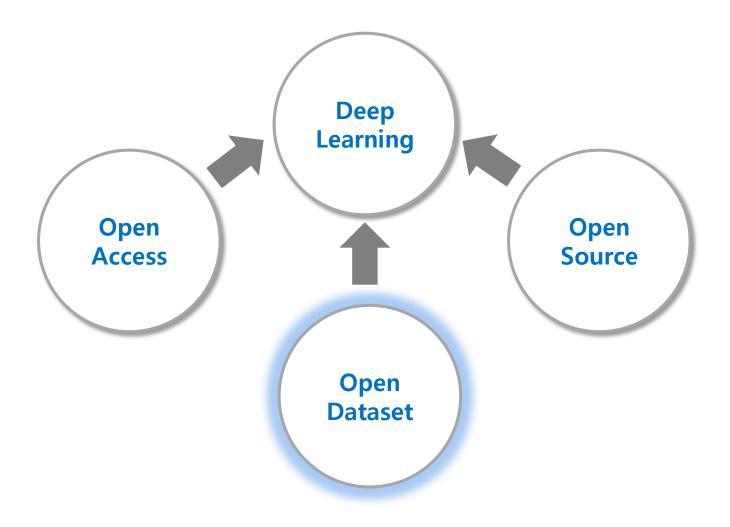
	Caffe	Torch	Theano	TensorFlow
Language	C++, Python	Lua	Python	Python
Pre-trained Model	Yes ++	Yes ++	Yes (Lasagne)	Not enough
Multi-GPU: Data parallel	Yes	Yes	Yes	Yes
Multi-GPU: Model parallel	No	Yes	Experimental	Yes (best)
Readable source code	Yes (C++)	Yes (Lua)	No	No
Good at RNN	No	Mediocre	Yes	Yes (best)

1) Stanford CS231n Andrej Karpathy

3.3 Top Deep Learning Projects

• Popular **GitHub** Projects related to Deep Learning¹⁾

Project Name	Stars	Description
TensorFlow	29622	Computation using data flow graphs for scalable machine learning.
Caffe	11799	Caffe: a fast open framework for deep learning.
Neural Style	10148	Torch implementation of neural style algorithm.
Deep Dream	9042	Deep Dream.
Keras	7502	Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on Theano and TensorFlow.
Roc AlphaGo	7170	An independent, student-led replication of DeepMind's 2016 Nature publication, "Mastering the game of Go with deep neural networks and tree search" (Nature 529, 484-489, 28 Jan 2016).
TensorFlow Models	6671	Models built with TensorFlow
Neural Doodle	6275	Turn your two-bit doodles into fine artworks with deep neural networks, generate seamless textures from photos, transfer style from one image to another, perform example-based upscaling, but wait there's more! (An implementation of Semantic Style Transfer.)
CNTK	5957	Computational Network Toolkit (CNTK).
TensorFlow Examples	5872	TensorFlow tutorials and code examples for beginners.
ConvNet JS	5231	Deep Learning in Javascript. Train Convolutional Neural Networks (or ordinary ones) in your browser.
Torch	5133	Torch7, Deep Learning Library.
OpenFace	4855	Face recognition with deep neural networks.


:

1) https://github.com/aymericdamien/TopDeepLearning

4. Wrap-Up

4.1 Open Access, Source & Dataset

• Open Dataset

4.1 Open Access, Source & Dataset

- Open Dataset
 - ImageNet
 - Microsoft COCO Dataset
 - Google Open Images Dataset
 - Youtube 8M Dataset
 - Facebook Question Answering Dataset
 - And so on...

4.2 Become a Deep Learning Hacker

- You can become a Deep Learning Hacker!
 - Open Access
 - Open Source
 - Open Dataset
 - And Open Courseware (MOOC)
 - . Coursera
 - . Udacity
 - . edx

4.2 Become a Deep Learning Hacker

• George Hotz (comma.ai CEO)

- Hacked the iOS device, Playstation3 ...
- Developed Deep Learning based self-driving car

INSIDE HOTZ'S

A 21.5-INCH SCREEN DISPLAYS THE CAR'S AUTONOMOUS TECHNOLOGY (THE OPERATING SYSTEM IS UBUNTU LINUX), ALONG WITH FEEDS FROM THE CAMERAS AND LIDAR SYSTEMS

(/1)

HOTZ ADDED A JOYSTICK TO THE CAR'S CENTER CONSOLE. A PULL OF THE TRIGGER ENGAGES THE SELF-DRIVING SYSTEM THE GLOVE COMPARTMENT HAS BEEN TURNED INTO A COMPUTING HUB WITH A MINI PC, A NETWORKING SWITCH, AND GPS SENSORS

4.2 Become a Deep Learning Hacker

• Jeff Dean (Google Senior Fellow)

- GFS(Google File System), MapReduce, BigTable ...
- TensorFlow, Google Brain Team Leader

(I do	Quora	Ask or Search C	Ask Question	E Read				
	Jeff Dean Sy	ystems Engineering	Deep Learning	Computer Programming	1			
				infrastructure a				
To do what they did with Deep Learning I imagine you have to have an expert level understanding.								
Considering he spent his entire career doing infrastructure and system engineering work, I was wondering how could he switch his area of expertise so quickly?								
	I feel that I am missing something, lik (more)							
	🖌 Answer	Request - Follow	151 Comment	Share Downvote	••	•		

Thank you.