
Backend.AI:
Open-source AI hyperscaler platform
for everyone

Jeongkyu Shin
Lablup Inc.

§ In-house container orchestrator
§ Linux kernel system call virtualization
§ Driver-level GPU partitioning virtualization
§ Hybrid cloud platform technology
§ Directly connected security layer between nodes
§ Real-time application layer composition within containers

Technologies Customer References

70+ and
growing!

2

Lablup Inc.: Mission3

• Problem & Our approach
• Backend.AI + Sokovan

– Summary
– History
• Characteristics

– Multi-level scheduler
– Dynamic allocation
– NUMA-aware resource mapping
– Multi-node clustering for training / inference
– Node subsystems
• Practical cases
• Demo

Topics4

Backend.AI: The Problem

5

• A new era of the AI world
– Unprecedented pace of evolution
✓ 90 days release cycles of TensorFlow in 2018-2019
✓ 1.5 years gap between the NVIDIA GPU generations

– BigData-like scale requirements + HPC-like performance requirements
– Batch jobs + Interactive jobs
• HPC challenges

– Sensitivity to resource mapping and hardware layouts
– All the latest hardware acceleration technologies (GPU, NVLink, RDMA, ...)
– Heterogeneity of the infrastructure
• AI challenges

– Fast cycles of experimentation & deployments
– Complexity of managing software stacks

ML/AIOps System Requirements6

AI/HPC Workload : Practical Problems

Heterogeneity of
resource demands

Complexity of I/O
acceleration options

Never-ending
compatibility issues

CPU-intensive: Data
preprocessing, analysis,
feature extraction…
GPU-intensive: model
training, validation, A/B
test, latency-free
inference…
I/O-intensive: data
manipulation, batch, inter-
GPU communication…

Inter-node GPU–GPU peering
GPUDirect I/O
GPUDirect Storage
Resizable-BAR
Tiered storage caching
HBM2,3 / DDR5 / CXL2,3
Block storage + Filesystem

Software
F77/F90 to Julia,
TensorFlow 1/2, PyTorch 1/2,
JAX, Haiku, …
Hardware
CPU-only / SSE, AVX-based,
CUDA, ROCm,
Google TPU/Coral,
GraphCore IPU, Habana …

7

• Let's make containers as the intrinsic abstraction of the workload units
• Containers

– Minimal performance impacts
– Faster deployments
– Isolation of complex software stacks
– Reproducible setups

• What did we have in 2015...?
– Slurm, IBM LSF
– Docker v1.7 ~ v1.9
– Kubernetes v0.x (Google Borg)
– No nvidia-docker yet... (v1.0 released in 2017)

Our Approach (v1)8

• Q. Could we combine the strong parts of Slurm and Kubernetes?

Problem

Slurm
✓ HPC-oriented batch job scheduler
✓ Tailored for long-running computing tasks
✓ Manual NUMA-aware job placement
✗ Multi-tenant security
• Requires the "host" mode networking even with

containers
✗ Automatic node setups
• Packages, container images, etc.

Kubernetes
✓ Microservice-oriented container orchestrator
✓ Tailored for short-lived user requests
✓ Multi-tenancy & Auto-scaling
✗ Suboptimal abstraction for resource-

demanding batch workloads
• Requires "acrobatics" to adjust many knobs

hidden somewhere (e.g., pod preemption policy,
HPA sync period, sidecar container lifecycle,
pipeline storage, ...)

We can ultimately accomplish what we need to,
but it takes more effort than it “should”.

https://betterprogramming.pub/kubernetes-was-never-designed-for-batch-jobs-f59be376a338

9

https://betterprogramming.pub/kubernetes-was-never-designed-for-batch-jobs-f59be376a338

• Let's build a new container orchestrator for AI/HPC from the ground up!
– Embrace both batch (training) & interactive apps (dev & inference)
✓ Job queues & scheduler (Sokovan) for batch jobs like ML training, data processing, ...
✓ App proxy for interactive apps like Jupyter notebooks, code-server, Triton Server, ...

– Unleash the potential of latest hardware advancements (NUMA, RDMA, GPUDirectStorage, ...)
– Full-fledged enterprise-grade administration (users, keypairs, projects, billing, stats, ...)

• Pros
– Super-fast: native integration with hardware details (NUMA, GPUDirectStorage, etc.)
– Super-customizable: plugin architecture for schedulers, accelerators, storage, etc.
• Cons

– Extra efforts to integrate with the existing ecosystem (...but we have Docker!)

Our Approach (v2)10

Sokovan: Introduction

11

Sokovan: From sokoban game12

Sokovan: Design Principle13

• Flexible compute session (No Pod!)
– Bundles one or more containers created on the fly (no pre-occupation)
✓ Containers are more like volatile processes with an overlay filesystem attached.

– Implements persistent storage via volume mounts

• Customizable scheduler
– Heuristic FIFO, DRF (dominant resource fairness), user-written algorithms

• Multi-tenancy first
– Goal: serve as a public SaaS
– Dynamic namespacing & partitioning instead (resource groups, scoped configuration)
– Decouples user/project from Linux user/group (e.g., for sharing data volumes)
✓ e.g., SSO plugins, Keystone integration

Sokovan: Design Principle14

• Fully acceleration-aware, multi-tenant, batch-oriented job
scheduling

• Combines a cluster-level node assignment scheduler and a
node-level resource/device assignment scheduler

• Job subsystem: manages docker, containerd and k8s
cluster agents

• Fully integrates multiple hardware acceleration technologies
into various system layers to unleash the potential
performance

Sokovan: Component Design15

Backend.AI: Sokovan-backed Operating Platform

All-in-one Enterprise Operating Platform
for AI Development and Services

Run at world-top-class computing performance
Maximize resource utilization
Hide system complexity
Automate management & scaling
Enterprise-grade stability & support
Work with favorite tools and frameworks

16

Backend.AI: Cutting-edge Acceleration Technologies

Cutting-edge Acceleration Technologies
Through Technical Collaborations

The only NVIDIA DGX-Ready software in Asia Pacific (one of 16 worldwide)
Established Technology Partnerships with Various Hardware Platform Vendors
The first container cluster-level GPUDirect Storage support

15%
Training Performance

Boost

97%
of theoretical GPU

performance achieved

120Gb/s
GPUDirect Storage

throughput

17

• Open-source core / plugins & extensions
• Monorepo with Pantsbuild
• Multi-architecture support

– x86-64, Arm64 (aarch64), RISC-V (w/ selected board)
• Operating System

– Linux, Windows (WSL), macOS
• Runtime backend

– Baremetal / OpenStack + Docker / Podman
– Docker (Snap) / Docker (systemd) / Docker (native) / Docker Desktop / OrbStack
• Prerequisites

– Python 3.11 (23.09) / stand-alone python
– PostgreSQL 14+ / Redis 7+ / etcd 3.5

Backend.AI: Tech stack18

• Debut at PyCon KR 2015 (Aug 2015)
• Open-sourced since 2017 (Sorna, Backend.AI)
• OpenStack-ready talk at OpenInfra Days Seoul 2018
• Backend.AI Container Pilot component is now known as Sokovan (Dec 2022)
• Now operates many AI clusters / supercomputers around the world

– Runs ~10,000 Enterprise GPUs

Backend.AI: History

70+ and
growing!

19

Backend.AI: Components20

Backend.AI: Architecture21

• Development setup:

• Production setup:

One-Liner to Kickstart Your Journey

$ git clone https://github.com/lablup/backend.ai
$ cd backend.ai
$ bash ./scripts/install-dev.sh # Default agent
$ bash ./scripts/install-dev-k8s.sh # (Optional for k8s agent)

$ pip install backend.ai-manager # Manager
$ pip install backend.ai-agent # Compute agents
$ pip install backend.ai-storage-proxy # Storage proxy
$ vi ~/.config/backend.ai/{manager,agent,storage-proxy}.toml

22

Backend.AI: Characteristics

23

Backend.AI: Harnessing Cutting-Edge Capabilities

Heterogeneous
Agent Backends

Dynamic & Fractional
GPU Allocation

Multi-level
Scheduler

NUMA-aware
Resource mapping

Multi-node
multi-container

clustering

Resource Group &
Namespacing

GPU/NPU
Abstration I/O Acceleration plane

24

Backend.AI: Harnessing Cutting-Edge Capabilities

Heterogeneous
Agent Backends

Dynamic & Fractional
GPU Allocation

Multi-level
Scheduler

NUMA-aware
Resource mapping

Multi-node
multi-container

clustering

Resource Group &
Namespacing

GPU/NPU
Abstration I/O Acceleration plane

Since we do not have enough time...

25

Multi-level scheduler26

• Cluster-level scheduler (Manager)
– Controls the density and priority of workloads
– Performs iterative two-phase scheduling per

resource group
✓ Which session to schedule first?
✓ Which node to assign the selected session's

containers?
– The scheduler plugin interface
✓ Each plugin defines the implementation for the

above two phases.
– Included schedulers
✓ Heuristic FIFO (to prevent HoL blocking)
✓ LIFO
✓ DRF (dominant-resource fairness)

Multi-level scheduler / Cluster-level27

• Node-level resource scheduler (Agent)
– Optimizes the per-container performance by

smartly mapping containers and devices
(CPU cores, GPUs, etc.)

– The compute plugin interface
✓ Each plugin reports the hardware config with

the capacity and layouts
– Included compute plugins
✓ CPU and memory (intrinsic)

– Extensions
✓ NVIDIA CUDA, AMD ROCm, Google TPU,

Graphcore IPU, ...
✓ Utilizes the NUMA topology information

provided by NVML and libnuma
✓ Auto-configures NCCL based on Infiniband

RDMA and GDS (GPU Direct Storage)

Multi-level scheduler / Node-level28

• Generic Kubernetes Pod-based GPU resource allocation
– Maps GPU and other computing resources in the Pod level only
– Creates Pods in prior and assigns Jobs to the Pods
– Some jobs may be pending due to inflexibility of sparing resources from existing Pods

Dynamic GPU Allocation: Powering Up with Sokovan29

• Dynamic GPU allocation with Sokovan / Backend.AI
– Accommodates all Jobs (in contrast to above) with higher GPU utilization
– Fractional GPU scaling allows more fine-grained resource distribution
– Dynamically creates and deletes the sessions upon job scheduling decision
– Allocates and reclaims the resources as soon as the Session is created and deleted

Dynamic GPU Allocation: Powering Up with Sokovan30

• NUMA-aware CPU/GPU allocator
– Offers two different policies: interleaving / prefer-single-node
– Auto-configures the CPU affinity mapping of containers based on GPU assignments
– Fully compatible with Weka.io Agents configured for GPU Direct Storage which requires every

NUMA node that has assigned GPUs to be activated in containers
– Supports an arbitrary number of NUMA nodes (1/2/4/8/...)

NUMA-aware resource mapping31

• Integrates other work unit provisioners
– Work unit may be a container, VM, or native

Linux process
– Kubernetes agent backend
✓ Attach an entire k8s cluster like a single compute

agent
✓ Scheduling / queueing is handled by Sokovan:

the k8s-side queue is always empty
– OpenStack agent backend *Alpha

✓ Integrated OpenStack VM management
✓ Unified API for both container / VMs

• API-level compatibility layer *Alpha

– Let k8s clients to control Backend.AI
– API Conformance: targeted to Backend.AI 23.09

Heterogeneous Agent Backends

k8s Adaptor Node

Backend.AI Manager

Backend.AI Agent
for k8s

k8s cluster

Session Pod

Bare-metal / VM Node

Backend.AI Agent
(native)

Session Container

Session Container

Session Pod

Session Pod

Session Pod

Session Pod

Session Pod

⋯

※ Parallel installation on the
Manager node is possible
depending on the installation
configuration

e.g. k8s subsystem as compute agent

32

• Apache AirFlow
– Run as task / executor

• MLFlow
– MLFlow can be run as instant MLOps platform with Backend.AI session
• FastTrack

– Lablup’s own MLOps platform

Integration with MLOps

DAGs

AirFlow
WebServer

AirFlow WebUI

Define
DAGs

Compute
Session 1

Compute
Session 2

Backend.AI Cluster

Backend.AI Client
SDK

Backend.AI
Executor

AirFlow Scheduler

Backend.AI
Task

…

33

Demo

34

Demo35

Backend.AI: Field Studies

36

• General System configuration
– Sokovan orchestrator: simultaneously achieves overall cluster system optimization and node-

level optimization, installed on Backend.AI manager and agents
– Network: Completely split planes for user / data (eth), storage (IB) and inter-node GPU comm.

(IB)

Practical cases37

• Model / system
– Training with Megatron-Deepspeed (ZeRO-

2 optimizer)
– Automatic GPU-GPU network configuration
– GPUDirect storage for training data I/O

• Achievements
– Approached the maximum theoretically

achievable GPU performance
– Less than 1% difference from that

achieved in bare-metal workloads based
on Slurm

Training large language models to the theoretically maximum performance

Test specification
16-node cluster

GPU: NVIDIA A100 80GB x 8 (Max. FLOPS per GPU: 150 TFLOPS)
Clustering platform: Backend.AI 22.03.8

Cluster CPU RAM GPU

Per-node AMD EPYC 7742
64-core x 2

1024GB
640GB (GPU)

NVIDIA A100
80GB x 8

Total AMD EPYC 7742
64-core x 32

16384GB
10240GB (GPU)

NVIDIA A100
80GB x 128

Test condition
World size 128

Data parallel size 128
Model parallel size 1

Batch size 64
Parameter size 7.66B (=7661.3M)

Tested 2022/12/05 08:20:28
Summary

Trial GPU# # of
param. FLOPS per GPU Total FLOPS

#1 128 7.66B 145.39 TFLOPS 18.60 PFLOPS
#2 128 7.66B 145.50 TFLOPS 18.62 PFLOPS

38

• Magnum IO GPUDirect Storage +
Weka.io
– Achieving network storage access of

150Gb/s or more per second.
– The world's first implementation for

GPUDirect Storage in a container-based AI
cluster

Applying GPUDirect Storage to the large container-based AI cluster

Test specification
13-node cluster

Clustering platform: Backend.AI 22.03.8

Cluster CPU RAM GPU

Per-node AMD EPYC 7742
64-core x 2

1024GB
640GB (GPU)

NVIDIA A100
80GB x 8

Storage Samsung PM1733/5 PCIe x4/dual port 4TB SSD x4

Test condition
of processors 100

Tested 2022/11/30 16:10:31
Summary

File size I/O Type Max. Speed
(Mb/sec)

Max. Speed
(OPS)

16KB Write 114724.27 7342353.15
Read 350137.17 22498779.04

1MB Write 111114.38 111114.38
Read 554428.82 554428.82

4MB Write 110763.55 27690.89
Read 557929.82 139482.45

39

• Magnum IO GPUDirect Storage +
Weka.io
– Achieving network storage access of

150Gb/s or more per second.
– The world's first implementation for

GPUDirect Storage in a container-based AI
cluster

Applying GPUDirect Storage to the large container-based AI cluster

0

200

400

600

16KB 1MB 4MB

I/O speed comparison

Write (GB/s) Read (GB/s)

40

• Designed a new orchestrator based on a
completely different abstraction
– Easily hackable
– Solved the various limitations of container for the

HPC/AI field

• Optimized the allocation and deployment of
acceleration hardware
– GPU, NPU, Network
– Exploit the full potential performance in multi-node

GPU setups

• Performance comparable to bare-metal
workloads in GPU-accelerated clusters
– GPU-to-GPU networking and GPUDirect Storage in

multi-node setups
– Achieved the theoretically maximum performance on

container clusters

Recap

App Proxy

GPU/NPU
Acceleration

GPU-GPU
network

Build tools / public image
repository

nvidia-docker v1/v2

AI Framework
Follow-ups Data-parallel Pipeline I/O

Co-existing in-container
Python adapter

Container-independent
Job subsystem

GraphQL-based API Offline installer

Large-scale
deployment system

User GUI/
CLI/App

High-Availability

CUDA driver layer abstraction

Programmable syscall filter

Control
Panel Dashboard Metric API

…and more!

41

Thank You!

jshin@lablup.com

lablup/backend.ai

Question?

42

