

The 14th Northeast Asia OSS Promotion Forum in Tokyo November 17th-18th, 2015

Robot Middleware Standard "RT-Middleware"

Geoffrey Biggs, Noriaki Ando

Robot software platform research team,

- Robot innovation research center,
- National Institute of

Advanced Industrial Science and Technology (AIST)

What is RT?

- RT = Robot Technology cf. IT
 - not only standalone robots, but also robotic elements (sensors, actuators, etc....)

RT-Middleware developed by AIST

OpenRTM-aist

- RT-Middleware
 - middleware and platform for RT-element integration
- RT-Component
 - basic software unit in RT-Middleware

Conventional systems

Conventional systems

Robot Arm

Joystick

By using RT-Middleware

compatible arm interfaces

Arm A

RT-Middleware provides common interface sets to connect modules Control software of various type of robots

> Joystick software

Humanoid's Arm

Robot Arm

The benefits of modularization

- Reusability
 - A component can be reused in various systems.
- Diversification
 - Various type of same functional modules can be tried in systems.
- Flexibility
 - System structure can be changed easily.
- Reliability
 - Easy to test a module and well tested modules are reliable.
- Durability
 - Well divided and independent module error does not affect too much to whole systems.

The benefits of RT-Component model

- Provides rich component lifecycle to enforce state coherency among components
- Defines data structures for describing components and other elements
- Supports fundamental design patterns
 - Collaboration of fine-grained components tightly coupled in time (*e.g.* Simulink)
 - Stimulus response with finite state machines
 - Dynamic composition of components collaborating synchronously or asynchronously

The aim of RT-Middleware Problem Solving by Modularization

Robot System Integration Innovation

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

Main features of RT-Component

RTM as a International Standard

Date: September 2012

Robotic Technology Component (RTC)

Version 1.1

```
Normative reference: http://www.omg.org/spec/RTC/1.1
Machine consumable files: http://www.omg.org/spec/RTC/20111205/
Normative: http://www.omg.org/spec/RTC/20111205/
```

http://www.omg.org/spec/RTC/20111205/rtc.xmi http://www.omg.org/spec/RTC/20111205/rtc.h http://www.omg.org/spec/RTC/20111205/rtc.idl

Non-normative:

http://www.omg.org/spec/RTC/20111205/rtc.eap

History

- September, 2005 Request for Proposal issued (starting standardization)
- September, 2006 Specification approved by OMG
- April, 2008
 OMG RTC ver.1.0 released
- September, 2012 Updated to ver. 1.1
- September, 2015 FSM4RTC (FSM based RTC standard) adopted

OMG Standard

Standardized by OMG process

- \rightarrow It can not be modified by just one company
- \rightarrow Various compatible implementation
- \rightarrow It promoted competition and interoperability

Ten or more RT-Middleware implementation exist

Implementation	Vendor	Features	Compatibility
OpenRTM-aist	AIST	Reference implementation by AIST	
HRTM	Honda R&D	ASIMO is now moving to HRTM	Ø
OpenRTM.NET	SEC	.NET(C#,VB,C++/CLI, F#, etc)	Ø
RTM on Android	SEC	RTM implementation for Android	Ø
RTC-Lite	AIST	Tiny implementation on PIC and dsPIC	0
Mini/MicorRTC	SEC	RTM/RTC for CAN and Zigbee	0
RTMSafety	SEC/AIST	Functional safety standard capable RTM implementation	0
RTC CANOpen	SIT, CiA	RTM for CANOpen standard	0
PALRO	Fujisoft	Yet another C++ PSM implementation	×
OPRoS	ETRI	Implementation of Korean national project	×
GostaiRTC	GOSTAI, THALES	C++ PSM implementation on a robot language	×

Users can chose and continue to use on of the RTM implementations

Application examples

HRP series: KAWADA industry Inc. and AIST S-ONE: SCHAFT

DAQ-Middleware: KEK/J-PARC KEK: High Energy Accelerator Research Organization J-PARC: Japan Proton Accelerator Research Complex

Disaster response robot simulator: NEDO/Chiba Institute of Technology

BeautoRover RTC/RTC-BT(VSTONE)

HIRO, NEXTAGE open: Kawada Robotics

OROCHI(RT)

RAPUDA: Life Robotics

Mobile SEM

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

RT-Middleware Summer Camp

- 1 week camp every summer
- This year: Aug. 3rd ~ 7th
- Number of participants: 20
- Venue: AIST Tsukuba center (Tsukuba city, Ibaraki pref.)
- Lectures, practical work and presentation by five teams.
- Staying in the AIST's accommodation and coding endlessly every night :-P.

RT-Middleware Contest

- Held as an organized session in SICE SI conference
 - Various prizes
 - Entry deadline: Aug. 21st
 - Software registration : Oct.
 - Paper submission due: Sep. 25th
 - Online examination: from end of Nov.
 - Presentation and award ceremony: Dec.
- Record of year 2014
 - Number of applications :20
 - SICE RT-Middleware award x1
 - Product supporting award x2
 - Company supporting award x11
 - Personal supporting award x7
- See more details: openrtm.org
 - Menu: community -> events

RTM Tutorial

- Regular tutorials
 - ROBOMECH(One of division on JSME)
 Tutorial: June
 - Boot camp: just before on summer camp, 3 ot 4 times in Tokyo, Nagoya, Osaka
- Other
 - International Robot
 Exhibition (iRex)

RTM Tutorials

- Regular tutorials
 - ROBOMECH(One of division on JSME)
 Tutorial: June
 - Boot camp: just before on summer camp, 3 ot 4 times in Tokyo, Nagoya, Osaka
- Other
 - International Robot
 Exhibition (iRex)

iRex RTM Tutorial

Date: Dec. 2nd, 2015 10:00-17:00 Venue: TOKYO Bigsight Capacity: 30 for training (First-come-first-served basis) Admission: Free Web sitehttp://openrtm.org

Thank you for your kind attention!!