
공개 기술지원센터SW

문서번호 중앙기술지원: -ENT-WEB-20070222 http://help.oss.or.kr

- 1 -

공개 기술지원S/W
주 구름인터랙티브()

한국소프트웨어진흥원

공개 기술지원센터SW

공개 기술지원센터SW

문서번호 중앙기술지원: -ENT-WEB-20070222 http://help.oss.or.kr

- 2 -

정보<Revision >
일자 VERSION 변경내역 작성자

2007.02.22 0.1 초기 작성 한상문

공개 기술지원센터SW

문서번호 중앙기술지원: -ENT-WEB-20070222 http://help.oss.or.kr

- 3 -

공개 기술지원SW
구분 기술지원: 단계:

작성자 한상문: 작성일: 2007.02.26

검토자: 검토일:

승인자: 승인일:

대상기업 기관 정보1. /

구분 항목 내용 비고

기업 기관/

정보

지역

기업 기관 명칭/ 주 구름인터랙티브()

부서 시스템운영팀

직책 대리

담당자 이름 백승일

전화번호 팩스번호/ 011-9143-8240

E-Mail

대상기업 기관 지원사항2. /

구분 항목 내용 비고

기업 기관/

지원사항

접수내용
웹서버로 사용중인 여러 대의 톰캣 클러스터링에 대한 세션 리플리케이션

구성

지원내역

톰캣 세션 클러스터링에 대한 참조 자료 송부1.

- http://www.onjava.com/pub/a/onjava/2004/04/14/clustering.html

첨부파일 참조: (tomcatclustering.zip)

톰캣 사이트 의 문서 송부- (tomcat.apache.org)

Clustering/Session Replication HOW-TO

To run session replication in your Tomcat 5 container, the following

steps should be completed:

All your session attributes must implement java.io.Serializable

Uncomment the Cluster element in server.xml

Uncomment the Valve(ReplicationValve) element in server.xml

If your Tomcat instances are running on the same machine, make

sure the tcpListenPort attribute is unique for each instance.

Make sure your web.xml has the <distributable/> element

Load balancing can be achieved through many techniques, as seen

in the Load Balancing chapter.

공개 기술지원센터SW

문서번호 중앙기술지원: -ENT-WEB-20070222 http://help.oss.or.kr

- 4 -

Note: Remember that your session state is tracked by a cookie, so

your URL must look the same from the out side otherwise, a new

session will be created.

Note: Clustering support currently requires the JDK version 1.4 or

later.

Overview

To enable session replication in Tomcat, three different paths can be

followed to achieve the exact same thing:

Using session persistence, and saving the session to a shared file

system (PersistenceManager)

Using session persistence, and saving the session to a shared

database (JDBCManager)

Using in-memory-replication, using the SimpleTcpCluster that ships

with Tomcat 5 (server/lib/catalina-cluster.jar)

In this release of session replication, Tomcat performs an all-to-all

replication of session state. This is an algorithm that is only efficient

when the clusters are small. For large clusters, the next release will

support a primary-secondary session replication where the session

will only be stored at one or maybe two backup servers. In order to

keep the network traffic down in an all-to-all environment, you can

split your cluster into smaller groups. This can be easily achieved by

using different multicast addresses for the different groups. A very

simple setup would look like this:

DNS Round Robin

|

Load Balancer

/ \

Cluster1 Cluster2

/ \ / \

Tomcat1 Tomcat2 Tomcat3 Tomcat4

What is important to mention here, is that session replication is only

the beginning of clustering. Another popular concept used to

implement clusters is farming, ie, you deploy your apps only to one

공개 기술지원센터SW

문서번호 중앙기술지원: -ENT-WEB-20070222 http://help.oss.or.kr

- 5 -

server, and the cluster will distribute the deployments across the

entire cluster. This is all capabilities that can go into the next

release.

In the next section will go deeper into how session replication works

and how to configure it.

How it Works

To make it easy to understand how clustering works, I'm gonna take

you through a series of scenarios. In the scenario I only plan to use

two tomcat instances TomcatA and TomcatB. We will cover the

following sequence of events:

TomcatA starts up

TomcatB starts up

TomcatA receives a request, a session S1 is created.

TomcatA crashes

TomcatB receives a request for session S1

TomcatA starts up

TomcatA receives a request, invalidate is called on the session (S1)

TomcatB receives a request, for a new session (S2)

TomcatA The session S2 expires due to inactivity.

Ok, now that we have a good sequence, I will take you through

exactly what happens in the session repliction code

TomcatA starts up

Tomcat starts up using the standard start up sequence. When the

Host object is created, a cluster object is associated with it. When

the contexts are parsed, if the distributable element is in place in

web.xml Tomcat asks the Cluster class (in this case

SimpleTcpCluster) to create a manager for the replicated context. So

with clustering enabled, distributable set in web.xml Tomcat will

create a SimpleTcpReplicationManager for that context instead of a

StandardManager. The cluster class will start up a membership

service (multicast) and a replication service (tcp unicast). More on

the architecture further down in this document.

TomcatB starts up

공개 기술지원센터SW

문서번호 중앙기술지원: -ENT-WEB-20070222 http://help.oss.or.kr

- 6 -

When TomcatB starts up, it follows the same sequence as TomcatA

did with one exception. The cluster is started and will establish a

membership (TomcatA,TomcatB). TomcatB will now request the

session state from a server that already exists in the cluster, in this

case TomcatA. TomcatA responds to the request, and before

TomcatB starts listening for HTTP requests, the state has been

transferred from TomcatA to TomcatB. In case TomcatA doesn't

respond, TomcatB will time out after 60 seconds, and issue a log

entry. The session state gets transferred for each web application

that has distributable in its web.xml. Note: To use session replication

efficiently, all your tomcat instances should be configured the same.

TomcatA receives a request, a session S1 is created.

The request coming in to TomcatA is treated exactly the same way

as without session replication. The action happens when the request

is completed, the ReplicationValve will intercept the request before

the response is returned to the user. At this point it finds that the

session has been modified, and it uses TCP to replicata the session

to TomcatB. Once the serialized data has been handed off to the

operating systems TCP logic, the request returns to the user, back

through the valve pipeline. For each request the entire session is

replicated, this allows code that modifies attributes in the session

without calling setAttribute or removeAttribute to be replicated. a

useDirtyFlag configuration parameter can be used to optimize the

number of times a session is replicated.

TomcatA crashes

When TomcatA crashes, TomcatB receives a notification that

TomcatA has dropped out of the cluster. TomcatB removes TomcatA

from its membership list, and TomcatA will no longer be notified of

any changes that occurs in TomcatB. The load balancer will redirect

the requests from TomcatA to TomcatB and all the sessions are

current.

TomcatB receives a request for session S1

Nothing exciting, TomcatB will process the request as any other

request.

TomcatA starts up

공개 기술지원센터SW

문서번호 중앙기술지원: -ENT-WEB-20070222 http://help.oss.or.kr

- 7 -

Upon start up, before TomcatA starts taking new request and making

itself available to it will follow the start up sequence described

above 1) 2). It will join the cluster, contact TomcatB for the current

state of all the sessions. And once it receives the session state, it

finishes loading and opens its HTTP/mod_jk ports. So no requests

will make it to TomcatA until it has received the session state from

TomcatB.

TomcatA receives a request, invalidate is called on the session (S1)

The invalidate is call is intercepted, and the session is queued with

invalidated sessions. When the request is complete, instead of

sending out the session that has changed, it sends out an "expire"

message to TomcatB and TomcatB will invalidate the session as

well.

TomcatB receives a request, for a new session (S2)

Same scenario as in step 3)

TomcatA The session S2 expires due to inactivity.

The invalidate is call is intercepted the same was as when a session

is invalidated by the user, and the session is queued with invalidated

sessions. At this point, the invalidet session will not be replicated

across until another request comes through the system and checks

the invalid queue.

Phuuuhh! :)

Membership Clustering membership is established using very simple

multicast pings. Each Tomcat instance will periodically send out a

multicast ping, in the ping message the instance will broad cast its

IP and TCP listen port for replication. If an instance has not

received such a ping within a given timeframe, the member is

considered dead. Very simple, and very effective! Of course, you

need to enable multicasting on your system.

TCP Replication Once a multicast ping has been received, the

member is added to the cluster Upon the next replication request,

the sending instance will use the host and port info and establish a

TCP socket. Using this socket it sends over the serialized data. The

reason I choose TCP sockets is because it has built in flow control

공개 기술지원센터SW

문서번호 중앙기술지원: -ENT-WEB-20070222 http://help.oss.or.kr

- 8 -

and guaranteed delivery. So I know, when I send some data, it will

make it there :)

Distributed locking and pages using frames Tomcat does not keep

session instances in sync across the cluster. The implementation of

such logic would be to much overhead and cause all kinds of

problems. If your client accesses the same session simultanously

using multiple requests, then the last request will override the other

sessions in the cluster.

Cluster Architecture

Component Levels:

Server

|

Service

|

Engine

/ \

Cluster ReplicationValve

|

Manager

|

Session

Cluster Configuration

The cluster configuration is described in the sample server.xml file.

What is worth to mention is that the attributes starting with

mcastXXX are for the membership multicast ping, and the attributes

starting with tcpXXX are for the actual TCP replication.

The membership is established by all the tomcat instances are

sending broadcast messages on the same multicast IP and port. The

TCP listen port, is the port where the session replication is received

from other members.

The replication valve is used to find out when the request has been

completed and initiate the replication.

공개 기술지원센터SW

문서번호 중앙기술지원: -ENT-WEB-20070222 http://help.oss.or.kr

- 9 -

One of the most important performance considerations is the

synchronous (pooled or not pooled) versus asynchronous replication

mode. In a synchronous replication mode the request doesn't return

until the replicated session has been sent over the wire and

reinstantiated on all the other cluster nodes. There are two settings

for synchronous replication. Pooled or not pooled. Not pooled (ie

replicationMode="synchronous") means that all the replication request

are sent over a single socket. Using synchronous mode potentially

becomes a bottleneck, You can overcome this bottleneck by setting

replicationMode="pooled". What is recommended here is to increase

the number of threads that handle incoming replication request. This

is the tcpThreadCount property in the cluster section of server.xml.

The pooled setting means that we are using multiple sockets, hence

increases the performance. Asynchronous replication, should be used

if you have sticky sessions until fail over, then your replicated data

is not time crucial, but the request time is, at this time leave the

tcpThreadCount to be number-of-nodes-1. During async replication,

the request is returned before the data has been replicated. async

replication yields shorter request times, and synchronous replication

guarantees the session to be replicated before the request returns.

The parameter "replicationMode" has three different settings:

"pooled", "synchronous" and "asynchronous"

톰캣 클러스터링을 위한 편집2. server.xml

하기 설정 파일 중- 굵은 기울인 글씨체 부분 편집/

공개 기술지원센터SW

문서번호 중앙기술지원: -ENT-WEB-20070222 http://help.oss.or.kr

- 10 -

<Server port="8005" shutdown="SHUTDOWN">

<!-- Comment these entries out to disable JMX MBeans support

used for the

administration web application -->

<Listener

className="org.apache.catalina.core.AprLifecycleListener" />

<Listener

className="org.apache.catalina.mbeans.ServerLifecycleListener" />

<Listener

className="org.apache.catalina.mbeans.GlobalResourcesLifecycleL

istener" />

<Listener

className="org.apache.catalina.storeconfig.StoreConfigLifecycleLis

tener"/>

<!-- Global JNDI resources -->

<GlobalNamingResources />

<!-- Define the Tomcat Stand-Alone Service -->

<Service name="Catalina">

<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->

<Connector port="8080" maxHttpHeaderSize="8192"

maxThreads="1024" minSpareThreads="150"

maxSpareThreads="300"

enableLookups="false" redirectPort="8443" acceptCount="100"

connectionTimeout="20000" disableUploadTimeout="true" />

<!-- Define an AJP 1.3 Connector on port 8009 -->

<Connector port="8009"

enableLookups="false" redirectPort="8443" protocol="AJP/1.3" />

<!-- Define the top level container in our container hierarchy -->

<Engine name="Catalina" defaultHost="localhost">

공개 기술지원센터SW

문서번호 중앙기술지원: -ENT-WEB-20070222 http://help.oss.or.kr

- 11 -

<!-- Define the default virtual host

Note: XML Schema validation will not work with Xerces 2.2.

-->

<Host name="localhost" appBase="webapps"

unpackWARs="true" autoDeploy="true"

xmlValidation="false" xmlNamespaceAware="false">

<Cluster

className="org.apache.catalina.cluster.tcp.SimpleTcpCluster"

managerClassName="org.apache.catalina.cluster.session.Delta

Manager"

expireSessionsOnShutdown="false"

useDirtyFlag="true"

notifyListenersOnReplication="true">

<Membership

className="org.apache.catalina.cluster.mcast.McastService"

mcastAddr="224.0.0.5"

mcastPort="46002"

mcastFrequency="500"

mcastDropTime="3000"/>

<Receiver

className="org.apache.catalina.cluster.tcp.ReplicationListener"

tcpListenAddress="192.168.1.109"

tcpListenPort="4002"

tcpSelectorTimeout="100"

tcpThreadCount="6"/>

<Sender

className="org.apache.catalina.cluster.tcp.ReplicationTransmit

ter"

replicationMode="pooled"

ackTimeout="15000"

waitForAck="true"/>

공개 기술지원센터SW

문서번호 중앙기술지원: -ENT-WEB-20070222 http://help.oss.or.kr

- 12 -

<Valve

className="org.apache.catalina.cluster.tcp.ReplicationValve"

filter=".*\.gif;.*\.js;.*\.jpg;.*\.png;.*\.htm;.*\.html;.*\.c

ss;.*\.txt;"/>

<Deployer

className="org.apache.catalina.cluster.deploy.FarmWarDeplo

yer"

tempDir="/tmp/war-temp/"

deployDir="/tmp/war-deploy/"

watchDir="/tmp/war-listen/"

watchEnabled="false"/>

<ClusterListener

className="org.apache.catalina.cluster.session.ClusterSessio

nListener"/>

</Cluster>

<Valve className="org.apache.catalina.valves.AccessLogValve"

directory="/backup/app_log/tomcat/"

prefix="localhost_access_log." suffix=".txt"

pattern="combined" resolveHosts="false"/>

<Valve

className="org.apache.catalina.valves.FastCommonAccessLogValv

e"

directory="/backup/app_log/tomcat/"

prefix="localhost_access_log." suffix=".txt"

pattern="combined" resolveHosts="false"/>

</Host>

</Engine>

</Service>

</Server>

