
Development Plan for OSS World Challenge 2011

 Registration No. 2011- ※Registration No. need not be written.

 Program title

The Shark Machine Learning Library

1. Program Overview

SHARK is a fast, modular, state-of-the-art, open-source C++ machine learning library . It is

both a rich framework for academic research as well as a reliable and well-performing toolbox for

real-world pattern recognition applications. The Shark library features many unique

algorithms to our knowledge not available in any other machine learning library. It also covers a

broad range of well-established learning methods and tools, for example (recurrent) neural

networks, (binary, one- and true multi-class) support vector machines, algorithms for single- and

multi-objective optimization, and many more.

The three design goals of Shark are speed, modularity, and portability. We strive for

notable performance with regard to all three aspects through object-oriented and generic

programming using templated C++ code. The library relies on only two, well-established

external dependencies, namely the Boost C++ Libraries and the CMake build system. The former

ensures compatibility with the upcoming C++0x standard; allows for seamless integration of

optimized math libraries for again faster linear algebra computations; and also makes it easy to

use multi-core- and GPU-capable parallel processing directives, among others.

The Shark Library is released under a GPL license (version 3 or later).

1) Development goals (background, aims etc.)

Machine learning is a branch of computer science and applied statistics that is concerned with

automated knowledge extraction from data [Bishop, 2006; Hastie et al., 2009]. Machine learning

algorithms can be characterized as software that allows systems to improve their performance on a

given task based on sample data or experience. In general, machine learning algorithms have

applications in countless fields such as computational biology, medical technology, computer

vision, robotics, finance, search engines, spam filters, and many more.

Our design goal for the Shark library is a generic and natural framework for machine

learning algorithms. The library should not "merely" offer valuable features in itself, but also

substantially facilitate design and implementation of new learners (i.e., learning

machines/algorithms) through its overall structure. In other words, we strive to provide a framework

in which implementing a new learner is as easy as defining a single, for example, data-based loss

function, which in turn can be naturally integrated with any of the existing models, optimizers, or

other typical building blocks. At the same time, we aim for state-of-the-art performance in terms of

computational speed. Finally, we want Shark to be portable across different platforms and

compilers. Our design goals are summarized by the three keywords "speed, modularity, and

portability".

The Shark code base has a history of over 15 years at the Institut für Neuroinformatik at

Ruhr-University Bochum, Germany. A previous version was featured in Volume 9 of the Journal of

Machine Learning Research [Igel et al., 2008]. It was the first general machine learning library

accepted by this flagship journal, which is the most prestigious label open-source machine learning

software can get. However, as the Shark project was started more than 15 years ago, the software

architecture of Shark 2.x has not been reflecting the state-of-the-art. Therefore, the library needed

to be completely rewritten.

The present submission constitutes a complete from-scratch rewrite of the previous

Shark code base, adding many new features and design concepts, and vigorously unifying

previously unconnected parts of the library under one common umbrella of design.

2) System configuration

Supported hardware and operating systems

The Shark library relies on CMake as a portable build system, as well as on a fully portable,

standard compliant code base. This enables us to support (at least) the three major operating

systems Unix, Mac OS X, and Windows together with a broad range of associated compilers. Both

32- and 64-bit platforms are supported.

Library Structure

The Shark main directory encompasses include/ and src/ directories for the header and

source files, respectively. On the same level, we also find the folders doc/, Test/ and

examples/, which hold the Shark documentation, Shark unit test files, and Shark usage example

files, respectively. The remaining folders either contain binaries, third-party material, or build

information. The include/ folder mirrors the basic library structure, which is divided into several

core components (Core, LinAlg, Data, Rng, Statistics) as well as specific branches

pertaining to different aspects in the machine learning setting (Algorithms, Fuzzy, Models,

ObjectiveFunctions).

 To get a first glimpse into Shark's well thought-out modular structure, let us consider the

interplay between optimization and model training. In Shark 3 all optimization problems inherit the

AbstractObjectiveFunction base class, and all optimization strategies (e.g., gradient-based

or direct search methods) are derived from AbstractOptimizer. At this general level there is no

explicit link to machine learning problems yet, such that it is easy to use the library for any type of

optimization problem. Of course, the available methods are of relevance for machine learning.

 Next consider the OptimizationTrainer class. It encapsulates an iterative model

training procedure by means of three objects: (i) a SupervisedObjectiveFunction (typically

an ErrorFunction, which in turn may be a data-coupled instance of an AbstractLoss or

AbstractCost function, and may also possibly be combined with a regularizer); (ii) an optimizer,

and (iii) a stopping criterion.

The last component is encapsulated by the AbstractStoppingCriterion interface.

This overall setup allows the OptimizationTrainer to make model training based on iterative

optimization a single opaque step, while at the same time relying on infrastructure for generic

optimization of an objective function.

Implemented Algorithms

Among others, Shark 3 currently supports:

• Supervised learning

• Linear discriminant analysis (LDA), Fisher–LDA

• Linear regression

• Support vector machines (SVMs) [Cortes and Vapnik, 1995] for one-class, binary

and true multi-category classification [Dogan et al., 2011] as well as regression (the

Shark SVM is the only SVM package implementing the fastest SMO-based learning

algorithm for dense large-scale problems using hybrid maximum gain working set

selection [Glasmachers and Igel, 2006])

• Feed-forward and recurrent multi-layer artificial neural networks [Bishop, 1995]

• Radial basis function networks [Bishop, 1995]

• Regularization networks [Poggio and Smale, 2003] as well as basic Gaussian

processes [Rasmussen and Williams, 2006] for regression

• Iterative nearest neighbor classification and regression [Border, 1990]

• Unsupervised learning

• Principal component analysis

• Restricted Boltzmann machines [Hinton and Salakhutdinov, 2006] (including many

state-of-the-art learning algorithms)

• Hierarchical clustering

• Data structures for efficient distance-based clustering

• Evolutionary algorithms

• Single-objective optimization (e.g., CMA–ES [Hansen and Ostermeier, 2001; Igel et

al., 2007; Suttorp et al., 2009])

• Multi-objective optimization (in particular, highly efficient algorithms for computing as

well as approximating the contributing hypervolume [Bringmann and Friedrich, 2008;

Bringmann and Friedrich, 2009])

• Fuzzy systems

• Basic linear algebra and optimization algorithms (e.g., Rprop [Riedmiller, 1994; Igel and

Hüsken, 2003])

Software Quality Management

The Shark library deploys a range of sophisticated methods and technologies to ensure a high

level of software quality and to prevent from regressions. First and foremost, an extensive and

ever-growing set of unit tests is available that reflects our approach of test-driven development.

Moreover, a pre-commit review system is in place (see Figure 1), and every check-in to the central

subversion repository triggers a built-test-package cycle for all of our supported platforms on our

Figure 1: The pre-commit system ReviewBoard for the Shark library.

Figure 2: The continuous integration system Jenkins for the Shark library.

continuous integration system (see Figure 2). In addition we execute static code analysis to check

for errors and to enforce our coding conventions

Deployment

Shark is available as a precompiled Debian package, as a precompiled binary package for

Microsoft Windows, and as a tarball for compilation from source. The installation procedure is well

covered by corresponding documentation pages.

3) Menus

Shark does not offer a graphical user interface, and there are no plans to establish one in the

future. Our focus is on providing fast implementations of learning algorithms and a flexible

framework for creating new ones. A typical application using Shark is a C++ program that

sequentially calls different classes and functions of the Shark C++ library. While one could imagine

using a graphical user interface for defining such a sequence, this in our case would simply be

equivalent to a graphical tool for generating C++ code. Similarly, Shark does not offer a graphical

user interface to visually explore the input data or the results generated by Shark. For this, we

recommend existing open-source high-performance plotting and visualization libraries.

However, Shark will support ExtJS, a cross-browser JavaScript framework for building

internet applications, which can be used for visualization independent of the operating system.

Rudimentary support for ExtJS has already been added to Shark 3 and proof of concept prototypes

exist. To this end, an HTTP server component will be incorporated with the Shark library that allows

for making available different parts of the library (objective functions, optimizers or whole

experiments) on the network via RESTful APIs.

4) Language used for development

Shark is developed purely in C++. In our view, C++ provides an optimal trade-off between higher-

level functionality and speed. At the time of this writing, we do not rely on any features defined as a

part of C++0x. Some components, as for example those segments of the GLKP library shipped

with Shark, rely on pure C code. Similarly, the functionality offered by the Boost uBLAS library can

be taken over by other implementations of the BLAS standard, which may rely on different

programming languages. In order to extend the Shark user base, the construction of Python (or,

more general, SWIG) bindings is one of the goals for future development.

5) Systems used

Hardware

Continuous integration server: Every commit to the Shark subversion repository triggers a build-

test-package cycle of the overall library for all our supported platforms. The continuous integration

system is running on a custom server machine featuring 16 compute cores powered by 2 Intel

Xeon CPUs. As the overall build infrastructure is virtualized, 24GB of memory are deployed to

render the system as performant as possible.

Pre-commit review server: The pre-commit review system is deployed on an off-the-shelf Dell

server running Ubuntu 10.04 and an Apache/Python/MySQL setup.

Web hosting: The Shark homepage as well as the development repository are hosted by the free

software portal "Sourceforge.net".

Applications: The hardware on which to run Shark for actual applications will naturally vary with the

nature and scale of each respective problem. While simple algorithms on small-scale problems

may finish in fractions of a second on a single core, more competitive tasks like training Boltzmann

machines or high-dimensional optimization may run for weeks on a cluster of cores. For example,

we successfully carried out numerous long-term experiments on the compute cluster of the

“Multimodal Computing and Interaction” cluster of excellence located at the Universität des

Saarlandes, Saarbrücken.

Software

Dependencies: We keep Shark as self-contained as possible. The Shark 3 package depends only

on the Boost C++ libraries. For building the Shark library, CMake is used. For generating the

documentation, which need not be done by end users, documentation generation tools are

required (see below).

Detailed overview over third-party code and tools:

The Boost libraries: Shark relies on the Boost C++ libraries (www.boost.org) for a number of

tasks such as efficient linear algebra operations on dense and sparse data structures and

serialization. These well-established libraries provide stable solutions to many standard problems

and are themselves extremely portable. Thus, the dependency on Boost is expected to even

further increase the portability of Shark. The Boost libraries are available under the Boost software

license, which is compatible with the GNU General Public License.

CMake: We use the CMake build system (www.cmake.org) to compile Shark and its

accompanying example and unit test programs. CMake is quickly becoming a widespread standard

and supports many platforms. CMake is available under the 3-clause (new/modified) BSD license.

GLPK: Shark for convenience ships with the simplex solver from GLPK, the GNU Linear

Programming Kit (www.gnu.org/software/glpk), version 4.45. GLPK is available under the

GNU General Public License.

Figure 3: Class documentation using Doxygen.

http://www.boost.org/
http://www.gnu.org/software/glpk
http://www.cmake.org/

Documentation: Shark mainly uses the de-facto standard Doxygen (GPL licensed,

www.doxygen.org) for C++ in-code documentation extraction, see Figure 3. The Shark tutorials

(see Figure 4 for an example) are converted from reStructuredText markup to html via Sphinx

(BSD licensed, http://sphinx.pocoo.org), and interface the Doxygen documentation via

Doxylink (BSD licensed, http://pypi.python.org/pypi/sphinxcontrib-doxylink).

Documentation & learning how to use the library

All functionality can be looked up in the documentation generated by Doxygen. An example from

the class list is shown in Figure 3. There are several ways to learn how to use the Shark library. It

comes with online tutorials that explain the principles of the library and show how to apply it in

practice. An example is shown in Figure 4. Further, the software is shipped with example

Figure 4: One of the tutorials explaining how to use the library.

http://pypi.python.org/pypi/sphinxcontrib-doxylink
http://sphinx.pocoo.org/
http://www.doxygen.org/

programs, which can be found in the subdirectory examples/. The unit tests in the subdirectory

Test/ serve as additional examples of how to use the various components of the library.

6) Plan for each development stage

This present version of the Shark library has been completely re-written from the previous code

base over the last 10 months. The structure of the library has been changed drastically. All the

measures for software quality measurement outlined above have newly been added. To the Open

Source Software World Challenge 2011, we submit an alpha pre-release version of the library. The

goals for the remaining months of 2011 are:

• A better integration of the component for Fuzzy Systems.

• Improving the documentation, in particular adding more tutorials and example programs.

• Implementing some remaining features of the previous release that are not yet ported,

especially the approximation of kernel expansions [Romdhani, 2004; Suttorp and Igel,

2007], k-means clustering, and missing components of the evolutionary algorithms toolbox.

• Implementing maximum likelihood model selection for binary SVMs [Glasmachers and Igel,

2010].

• Optimization of the kernel-target alignment for (SVM) model selection [Igel et al., 2007].

• Extending the RBM (Restricted Boltzmann Machine) component.

• Not all parts of the library yet fully adhere to the new Shark coding and documentation

standards. These will be adapted accordingly.

After these steps, the full release of the all-new Shark 3.0 will be carried out. For the long-term

development stages see part 2. of this proposal.

7) Number of personnel input and work assignment

Please refer to the enclosed "List of Team Members" for the names and respective main work

areas of all current Shark developers. The core team consists of six developers, for which

developing the Shark library mostly coincides with their full-time academic work on machine

learning algorithms. In addition, a number of former Shark developers as well as regular users are

contributing on a smaller scale. The team members' specialized work areas follow the division of

the library into topical categories, cf. item 2).

2. Long-term prospects of the program developed (No specific form is required.)

Even before the current from-scratch rewrite, the Shark library (or its predecessor code base), had

an established history of long-term continuation and support, dating back over 15 years at the

Institut für Neuroinformatik at the Ruhr-University in Bochum, Germany. The Shark library's

popularity has constantly risen over the past, with over 500 downloads in March 2011. For the

future, we plan to:

• Increase the interaction with the user community and the number of contributing external

developers.

• Add new learning algorithms to the library, in particular decision trees, random forests, as

well as boosting and transfer learning algorithms.

• Complete the transfer of our reinforcement learning code base to Shark 3.

• Extend the Shark user base by providing bindings for other programming languages,

preferably via the SWIG interface generator tools.

• Further simplify the usability of generic multi-core and GPU processing directives for linear

algebra components in Shark. Moreover, stochastic simulations of approximation

algorithms, e.g., approximation of the least hypervolume contributor, on behalf of special-

purpose processors are part of our mid-term and long-term plans for the library.

• Offer Shark tutorials at machine learning conferences and summer schools.

References:

Bishop, C. M. (2006), Pattern Recognition and Machine Learning, Springer-Verlag.

Bishop, C. M. (1995), Neural Networks for Pattern Recognition, Oxford University Press, Oxford.

Border, A. J. (1990), 'Strategies for efficient incremental nearest neighbor search', Pattern Recognition
23(1/2), 171--178.

Bringmann, K. & Friedrich, T. (2009), Approximating the Least Hypervolume Contributor: NP-Hard in
General, But Fast in Practice, in 'Proc. of the 5th International Conference on Evolutionary Multi-Criterion
Optimization (EMO 2009)', Springer-Verlag, , pp. 6-20.

Bringmann, K. & Friedrich, T. (2008), Approximating the Volume of Unions and Intersections of High-
Dimensional Geometric Objects, in 'Proc. of the 19th International Symposium on Algorithms and
Computation (ISAAC)', Springer-Verlag, , pp. 436-447.

Cortes, C. & Vapnik, V. (1995), 'Support-Vector Networks', Machine Learning 20(3), 273-297.

Dogan, Ü.; Glasmachers, T. & Igel, C. (2011), 'Fast Training of Multi-Class Support Vector Machines',
Technical report, Department of Computer Science, University of Copenhagen.

Glasmachers, T. & Igel, C. (2010), 'Maximum Likelihood Model Selection for 1-Norm Soft Margin SVMs with
Multiple Parameters', IEEE Transactions on Pattern Analysis and Machine Intelligence 32(8), 1522-1528.

Glasmachers, T. & Igel, C. (2006), 'Maximum-Gain Working Set Selection for Support Vector Machines',
Journal of Machine Learning Research 7, 1437-1466.

Hansen, N. & Ostermeier, A. (2001), 'Completely Derandomized Self-Adaptation in Evolution Strategies',
Evolutionary Computation 9(2), 159-195.

Hastie, T.; Tibshirani, R. & Friedman, J. (2009), The Elements of Statistical Learning: Data Mining, Inference,
and Prediction, Springer-Verlag.

Hinton, G. E. & Salakhutdinov, R. R. (2006), 'Reducing the Dimensionality of Data with Neural Networks',
Science 313(5786), 504--507.

Igel, C.; Glasmachers, T. & Heidrich-Meisner, V. (2008), 'Shark', Journal of Machine Learning Research 9,
993-996.

Igel, C.; Glasmachers, T.; Mersch, B.; Pfeifer, N. & Meinicke, P. (2007), 'Gradient-based Optimization of
Kernel-Target Alignment for Sequence Kernels Applied to Bacterial Gene Start Detection', IEEE/ACM
Transactions on Computational Biology and Bioinformatics 4(2), 216-226.

Igel, C. & Hüsken, M. (2003), 'Empirical Evaluation of the Improved Rprop Learning Algorithm',
Neurocomputing 50(C), 105-123.

Igel, C.; Hansen, N. & Roth, S. (2007), 'Covariance Matrix Adaptation for Multi-objective Optimization',
Evolutionary Computation 15(1), 1-28.

Poggio, T. & Smale, S. (2003), 'The mathematics of learning: Dealing with data', Notices of the AMS 50(5),
537--544.

Rasmussen, C. E. & Williams, C. K. I. (2006), Gaussian Processes for Machine Learning, MIT Press.

Riedmiller, M. (1994), 'Advanced Supervised learning in Multi-layer Perceptrons – From Backpropagation to
Adaptive Learning Algorithms', Computer Standards and Interfaces 16(5), 265-278.

Romdhani, S.; Torr, P.; Schölkopf, B. & Blake, A. (2004), 'Efficient face detection by a cascaded support-
vector machine expansion', Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences 460(2051), 3283-3297.

Suttorp, T.; Hansen, N. & Igel, C. (2009), 'Efficient Covariance Matrix Update for Variable Metric Evolution
Strategies', Machine Learning 75(2), 167-197.

Suttorp, T. & Igel, C. (2007), Resilient Simplification of Kernel Classifiers, in J. Marques de Sá; L. A.
Alexandre; W. Duch & D. P. Mandic, ed., 'International Conference on Artificial Neural Networks (ICANN
2007)', Springer-Verlag, pp. 139-148.

