

제10회 공개SW 개발자 대회

Samsung Tizen Application 부문

Let'e Move

Smartphone Remote Controller Using only Gestures

Contents

Project Concept

- Training
- Real-time Gesture 검출
- Remote Application Control

Project UI 구성

- Main UI
- SAP Connect & Disconnect
- Training Page
- Control Page

Project 개발 배경 및 목적

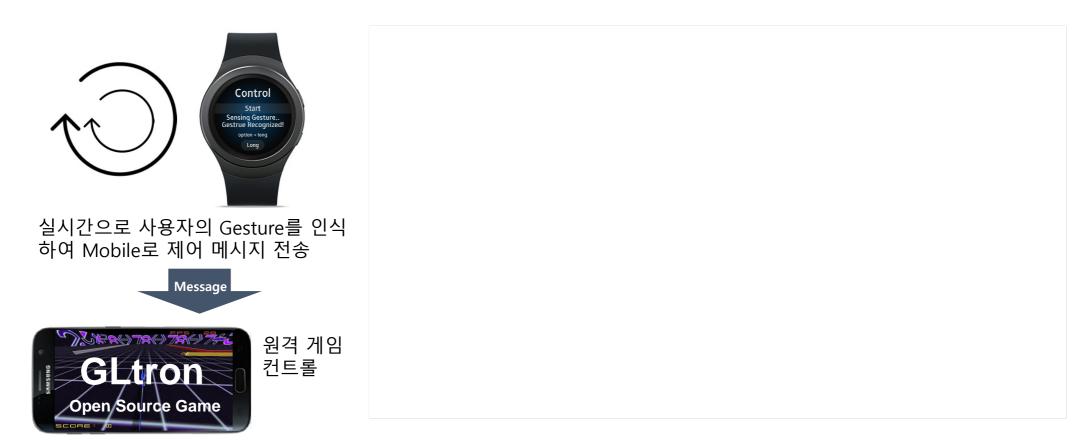
- Project Map
- 새로운 UX & VR 기기에 응용
- 상용화 가능성
- System Architecture

Algorithm

- Algorithm
- Test Result
- Github Page

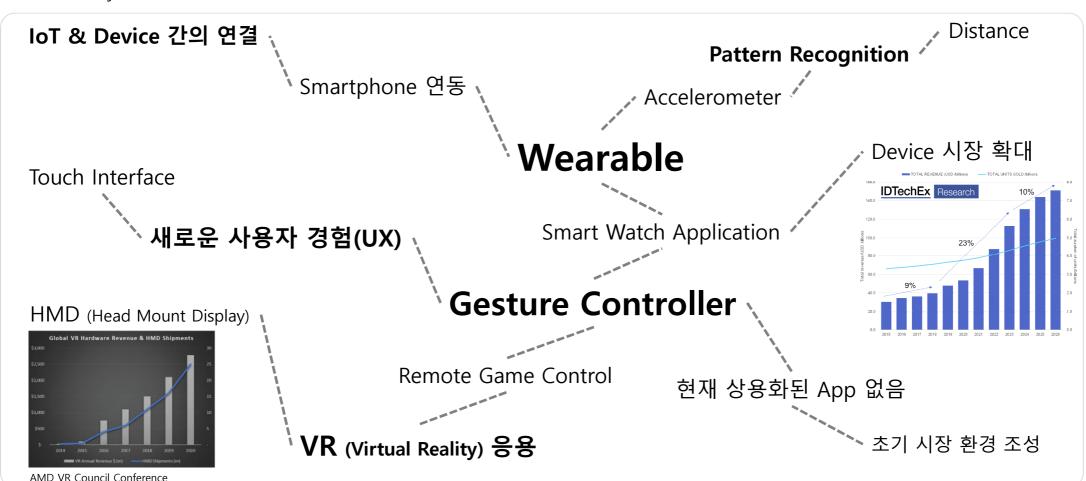
Project Concept ...

Project Concept


1. Training: Gesture에 의해 수집된 가속 센서 데이터를 가공하여 File Out & Storage에 저장

Project Concept

2. Real-time Gesture Recognition & Remote Application Control


Project 개발 배경 및 목적

Project Map

Project 개발 배경 및 목적

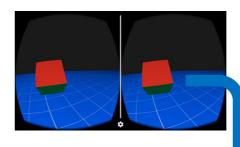
새로운 UX & VR 기기에 응용

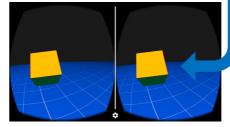
Project 개발 배경 및 목적

Gesture를 사용한 새로운 User Experience

Touch Interface

Gesture Interface




VR에 등장에 따른 새로운 방식의 Interface 필요성 증가

Head Mounted Display (ex. Gear VR)

VR(Virtual Reality) Application

Treasure Hunt VR:

- Google이 공개한 Open Source VR Application
- Gyro 센서를 활용하여 사용자의 시선 방향을 예측하고 Application 내 물체의 방향과 일치 할 경우, 물체 색상 변경
- Gear의 Gesture 인식과 연동하여 사용
 → 사용자가 실제 동작을 통해 VR App을
 Control 하는 새로운 사용자 경험 창출 가
 능

• 실제 Graphic이 적용된 Treasure Hunt Game

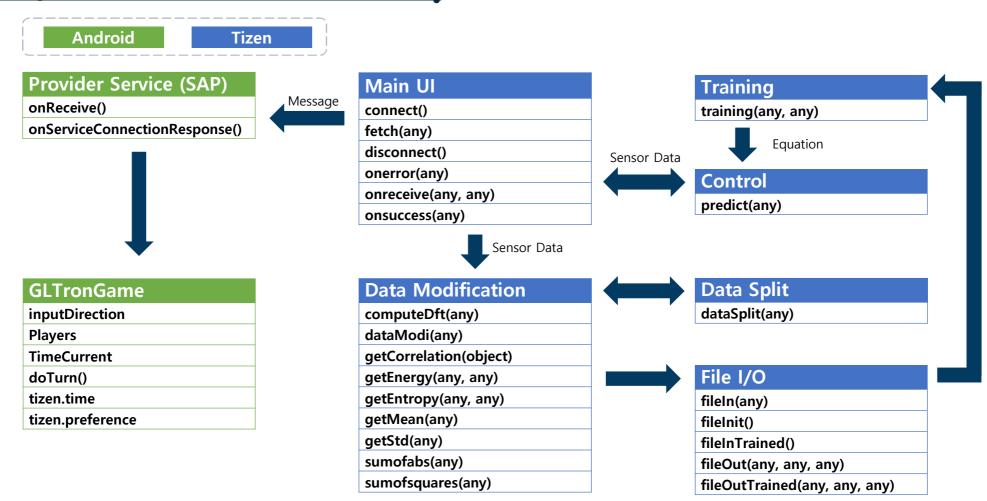
상용화 가능성

Project 개발 배경 및 목적

Tizen Store 등에 공개된 유사 App 없음

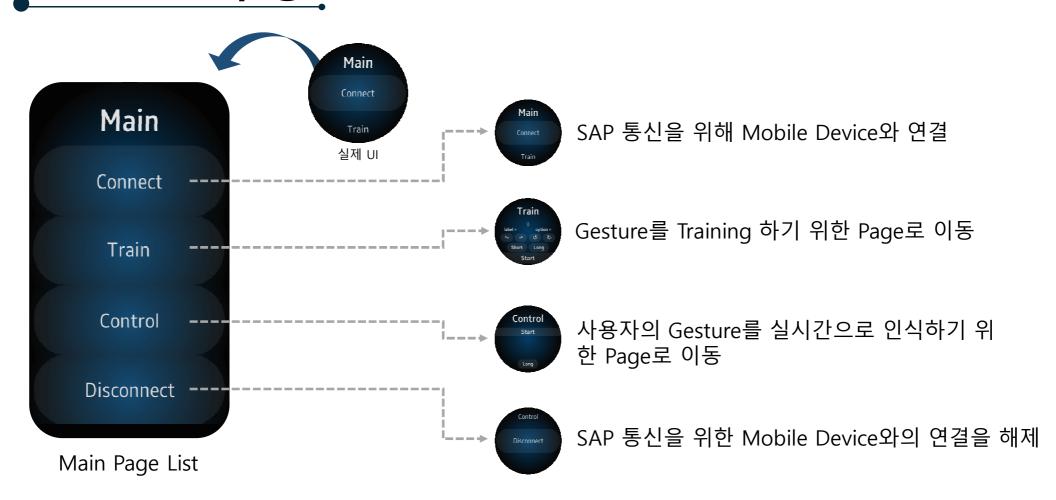
No result found on the Tizen app store for gesture controller!

Gesture Controller 사용 방법 예시


- Install Gesture Controller on a Tizen wearable device
- Install a Android App that will communicate with Gesture Controller
- Select an App that User wants to connect
- Training the Gestures
- 🛮 🔮 Start Real time Gesture Recognition & Control

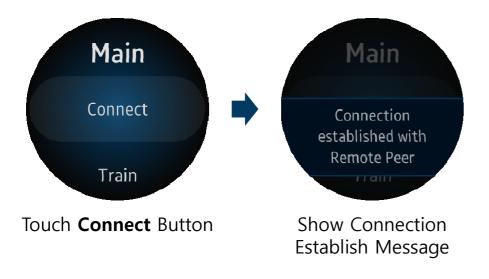
연동 가능한 다양한 Application 개발 필요!

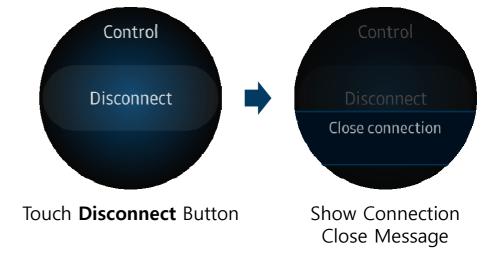
System Architecture



Project UI 구성

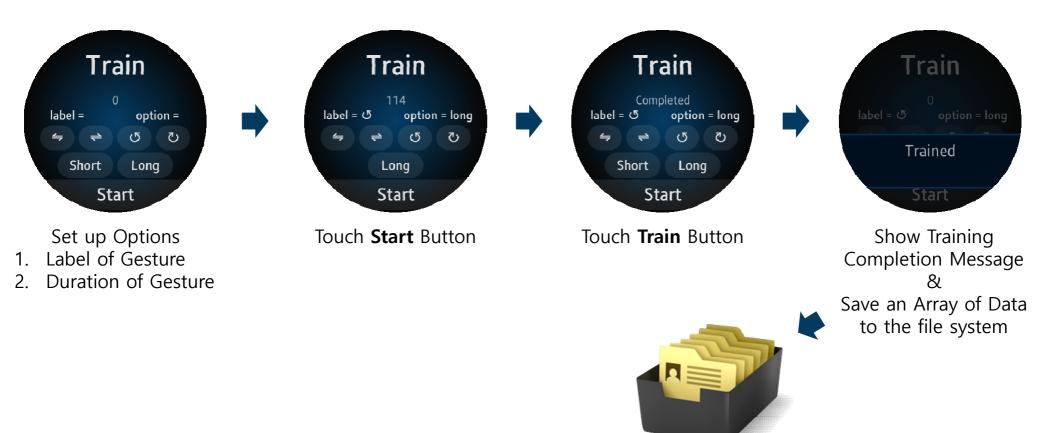
Main UI 구성





SAP Connect / Disconnect

SAP (Samsung Accessory Protocol): Bluetooth로 연결된 Smartphone과 Gear S2 두 Device 간에 통신을 위한 Protocol



Training

- 사용자가 설정한 Label과 Duration으로 Gesture의 가속도 센서 값을 검출하여 Array 형태로 저장
- Training을 하게 되면 축적된 Sample들의 Array 값을 사용해 판별식을 생성

Control (Real-time Gesture Recognition)

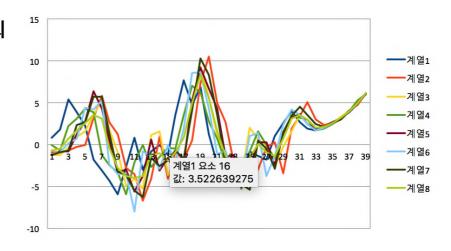
• Start를 누르게 되면, 50ms의 interval로 기기의 가속도 센서 값을 Array 형태로 가공하여, 판별식을 사용해 Gesture 일치 여부를 판단하게 됨

Algorithm

Gesture Recognition에 적용된 원리

Algorithm

Gesture Recognition에 적용된 원리

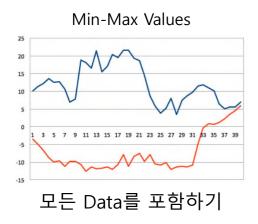

Accelerometer: A device that measures acceleration excluding gravity effect

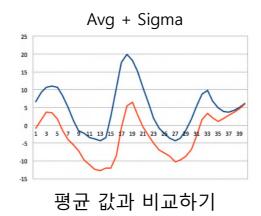
- Sensing Interval 50ms, 1초에 약 20개의 표본 추출
- 약 2초 동안 행해진 Gesture의 가속도 Data를 Array 형태로 저장
- 각 Axis 별로 40개의 Sample Data 추출
- 3개의 Axis * 40개의 가속도 Data = Array 당 120개의 값

 X축에서 특정 동작의

 시간에 따른 가속도

 값 Samples





Gesture Recognition에 적용된 원리

Raw Data Matching

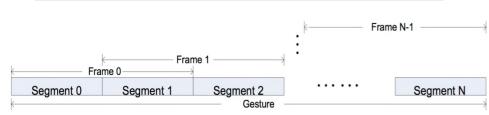
- 다양한 동작에 대한 Immunity가 거의 없음 정확도 매우 낮음
- Training 반복 횟수에 따라 정확도가 증가하지 않음

- 동작 시행에 따른 Variation이 크기 때문에 정확도 떨어짐
- Sigma 값을 키울 경우 0 근처에 데이 터를 포함하기 때문에 정지 동작에서 Noise Immunity 떨어

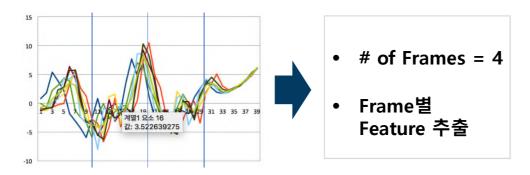
Extracting Features

	Features							
	Frequency Domain	Mean	The DC component of the frequency domain over the frame					
		Energy	The sum of all the squared DFT component magnitudes except the DC component of the sign al					
		Entropy	The normalized information entropy of the DFT component magnitudes, where the DC component is also excluded					
	Time Domain	Std	The amplitude variability of a gesture					
		Correlation	The strength of a linear relationship between the two axis					

- 단순한 Raw Data의 비교 대신 가속도 Data가 가지고 있는 Time Domain과 Frequency Domain에서의 특징을 비교
- Frequency Domain에서의 비교를 위해 가속도 Data에 Discrete Fourier Transform (DFT) 을 적용
- 전체 Data의 특징은 시간 길이에 따라 Variability가 증가하므로 짧은 구간으로 나눠 특징을 추출



Algorithm


Gesture Recognition에 적용된 원리

Framing

Gesture Recognition with a 3-D Accelerometer, Jiahui Wu et tal, Zhejiang University, Hangzhou

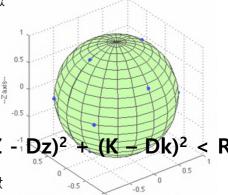
- 하나의 Frame은 2개의 Segment로 구성
- 이웃하는 2개의 Frame은 하나의 Segment를 공유
- 즉 Frame1 = Seg1 + Seg2, Frame2 = Seg2 + Seg3

Extracting Features

예시) Feature 2, X axis 가속 센서 Wave의 Frame 별 Energy

Gesture 1	Frame 1	Frame 2	Frame 3	Frame 4
Feature 2	-8.17	-1.79	-2.77	-5.12
		V	7	K

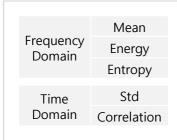
Gesture 2	Frame 1	Frame 2	Frame 3	Frame 4
Feature 2	4.27	4.59	-12.59	0.69


*실제 값은 소수점 둘째 자리까지만 표현

--Y axis--

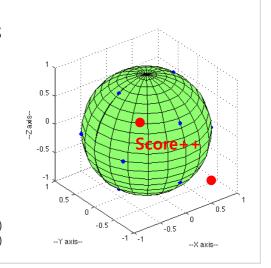
- 각 Frame의 값 = 4차원 공간의 각 Axis의 값
- Training Sample들이 갖는 각 Feature의 값
 은 공간에 위치한 점으로 표현 할 수 있음
- 유사한 Gesture는 Sample의 점들이 유사한 분포를 보일 것이라는 것을 알 수 있음
- 각 점들의 분포한 거리를 이용하여 가상의 ^및 공간을 만들 수 있음

$$(X - Dx)^2 + (Y - Dy)^2 + (Z - Dz)^2 + (K - Dk)^2$$


 새로 입력된 가속 센서 데이터의 Feature 값 이 공간 안에 위치하는지 판별

Algorithm

Gesture Recognition에 적용된 원리


5 Features x 3 Axis (x, y, z) = 15 Characteristics of a Gesture

In Real time.. Calculate below equation for every 15 characteristics

$$(X - Dx)^2 + (Y - Dy)^2 + (Z - Dz)^2 + (K - Dk)^2 < R$$

If the result is true, it gets a Score And If the total score you get is higher than a certain number, it is recognized as a trained gesture

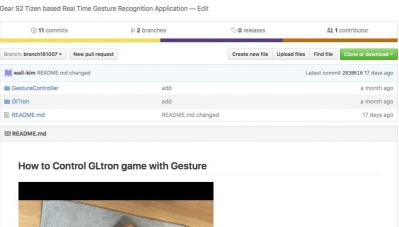

D is a center point of the figure (Average of all points) R is a radius of the figure (twice the Avg dist of all points from D)

Test Result

Gesture Recognition에 적용된 원리

- Circle 형태의 공간을 판별식으로 사용
- 공간 반경에 1.2의 Weight 값을 줌 (새로 들어 오는 Data에 Margin)
- Score가 8 이상인 값에 대해 검출을 했을 때 75%의 검출 성공 및 Noise에 대해 100% Immunity 보임
- Weight 값을 2까지 증가 시킬 경우 대부분의 경우에서 15의 Score를 보임 (Noise Immunity는 저하)

Github Page


Current Github Open Source Libraries

- Tizen, Android 기기에서 실행 할 수 있는 Project Code
- Project Code 내 영문 주석을 통한 설명
- 주요 함수 및 기능에 대한 README.md Text 설명
- Project 실행을 위한 동영상 설명

Future improvement as an Open Source Program

- Algorithm 개선을 통한 Noise Immunity 향상
- 다양한 User independent Gesture Library 확보
- Short-Term Gesture에 대한 정확성 높이기
- VR Application Control Example 개발

Main Page

wall-kim / LeteMove

- Connect: Prepare for the SAP communication with remote Samsung mobile device connected using bluetooth (블루투 스로 연결된 모바일 기기와 SAP을 사용해 통신을 준비)
- Disconnect : Disconnect Mobile device (SAP 통신을 위한 연결을 해제)
- Train : Gesture Training Page로 이동

스마트폰 게임과 연결 (SAP)

• Control : Gesture를 사용한 Remote Control Page로 이동

Training Pag

- Label 선택 : Gesture의 종류를 결정하는 label을 선택. 같은 label에는 같은 동작만 학습
- Option 선택: Gesture를 수행하는 시간의 길이를 선택
- Start : Gesture를 수행하여 가속도 센서의 데이터를 Array 형태로 저장
- Train : Array에 저장된 데이터를 파일 아웃 하여 전체 데이터와 합친 뒤 다시 파일 인 하여 Training을 진행 (Gesture 인식을 위한 방정식 의 계수 생성)

실시간 Gesture Control

- SAP을 사용해 Mobile로 연결된 상태에서 Gesture를 인식시키면, 해당하는 명령을 Mobile로 전송
- Option : 기기가 인식 할 Gesture의 시간 길이를 선택
- Start : 실시간 Gesture 인식을 시작

