
Open Cloud Engine
- An Open Source Cloud Native Transformer

DevOps

Spring
Cloud

DDD

AS-IS: Pain-points in service operation

• With Separated operation team and
development team,

• Even the development has been done,
ops team cannot deploy the new
features due to the fear of the errors
that brings customer loss.

• With manual operation, it is hard to
mange the Service Level Agreements,
the claims from customers is
increasing.

• Requests for Service upgrade is too
frequently, it brings over-time
working everyday. Developer’s
happiness grade is too low.

• Module update of one team effects all
the teams’ modules, all teams have to
test all the systems and standby
during every single deployment of
teams.

Open Cloud
Engine

Open Cloud Engine

Migrating to Cloud Native Application

Product and customization
Long-term Delivery (typically

9 mo.)
Monolithic

Subscription and self-serviced
Agile and Continuous Delivery
Micro services

Skills & Expertise on MSA

DevOps

Cloud
Applications

Micro Service
Architecture

Domain
Driven
Design

Service
Decomposition

Service
Discovery

CI/CD

Production
Debugging

Business
Support ServiceBilling-

metering

Event-Driven
Architecture

Process
Orchestration

Implementing Successful
Native Cloud Application
requires 1. Micro Service
Architecture-based
Application Design and 2.
Tools and environments
of DevOps

OCE’s mission

Open Cloud Engine aims to
support full-lifecycle of
cloud native application

development

O
p
e
ra

te

A

B

C

D

E

F

End-to-end
MSA

Development Cycle

Service
Identification

and API
design

Implement
ing Mi-
services

Compositing
Services

Analysis

Business
Support

Automate
Operations

http://github.com/TheOpenCloudEngine

Operate

DDD by
UML Cloud IDE

Contract-based Test

API
Test

UI
Test

DevOps portal

Zero Down-time

Edge Services
API GW

(Zuul)

IAM
(OAuth2)

BPM
(BPMN2)

Semantic
Entity

IoT
ML

(Keras)

Block-
chain

gitlab

Kubernetes

Test Load
Generator

Eclipse Che
Server Language

Assist

Java-Gen /
Reverse

Public Education
Example

Defense Industry
Example

Commerce
Example

Event Storming

General

Micro-services

Platform

Micro-services

Domain

Micro-services

TestCodeAnalysis

Billing/Metering
Event Queue

(Kafka)

BPMN

OCE components
T
o

o
ls

Analysis /
Design Phase

Open Cloud Engine

Micro Services Characteristics

- By James Lewis and Martin Fowler

Doman-Driven Design Process

Event Storming

Business Process
Modeling

Context Map & Class
Modeling

Process Modeling with BPMN

To analysis event-driven
inter-communication of mi-

service, BPMN2.0
specification could be used

for modeling its choreography
with their expressive power
such as “Service Pools”,
“Web Service Tasks”, and

“Signal Events”.

Later, process definitions can
be used for generating source
code for Java(Spring)-based

event-driven applications.

utilized OSS:
VueJS(China),

OpenGraph(Korea)

Domain Class Modeling with UML

By using the Domain class
modeler, domain experts or

application architects can draw
their domain model for unit Mi-

services.

Domain models can be used for
generator Java(Spring)-based
database applications and the

changes in application code will
be applied to the model vice-

versa. (Round-trip Engineering)

utilized OSS:
Javareverse, VueJS

Model to Implementation

Business (Domain) Event

Pools / Sub-domains

Process

Aggregate

Entity

Kafka Event / CQRS

JPA Entity & Repository

Micro-Services

BPMN 2.0

EDA

MSA

POA

REST

NoSQL

RDB

Service
Implementation

Phase

Open Cloud Engine

Output: Best mix of MSA Chassis

OAuth 2.0

MVVM: vueJS

Netflix OSS Spring Cloud
BPMN 2.0

Reactive & Kafka

Docker

Event-driven Arch.

Containerization

Service OrchestrationService Dynamicity

Security

UI REST , Data

Main Application

Domain Classes

Services and Repositories

Settings

Domain Model in UML
Entity, Repository, Service

Decomposed by Business Capabilities

Java(SpringBoot)-based Microservice
JPA Entity, Repository, JAX-RS Service

12-Factors Cloud-Native

Code

generation

Reverse Engineering

Model to Code & Code to Model

Cloud IDE & Build Pipeline

Integrated with DevOps
platforms: source version

control, agile collaborations,
pipelines for CI/CD

Utilized OSS:
Eclise Che, GitLab, Maven

Extensible Polyglot Boilerplates

Tailor for users’ development
environment - various
application templates

(Docker File-based)

Utilized OSS:
Docker

Generated Architecture

Front-end
(Responsive, Client-side Service Aggregation)

Scalable Global Single Instance
Database

Service

API GW

Service

Service

(Machine)
3rd-party Apps

BillingIAM

CRUD

Data
Sync via REST REST Call

Service
Service

Service
Service

Service

Service Container

Scalable Global Single Instance
Database

Issue Token

ID/PWD

Collect
Usage

Metaworks4 UI Components

Metaworks4
MSA Chassis

Applied MSA Design Patterns:

1. Multiple Instances Per Host

2. Externalized Configuration

3. API Gateway

4. Client-side discovery

5. Self-registration

6. Circuit Breaker

7. Database per Service

8. CQRS

9. Event Sourcing

10. Access Token

11. Service Contract Test

12. Log Aggregation

13. Health Checking

14. Distributed Tracing

15. Client-side UI Composition

Service Mashup
& Monetize

Phase

Open Cloud Engine

Mashup Strategies

By Process

By Composite Service

By UI

Cross-cutting Issues

Mashup Strategy 2:

Service Mashups by Process
• Process based mashups use

modeling tools to create new
composite services or UIs to
combine pre-existing services
without extra development.

• Components like events,
tasks by service, task by
human(UI creation) can be
drawn in the shape of a flow
chart and can be executed as
drawn.

• Services registered in Eureka
registry can be called and set
up with GUI, then the created
process works as a new
service.

• API GateWay,BPN are tools
that support these.

System Integration:

Dynamic Service Binding
The instinctive idea of "service pool" modeling guides modeling set-ups by dynamically recognizing payload schema,
connection methods and resources inside a micro-service just by point-and-clicking the connection target registered in
Registry.

23

System Integration:

Dynamic REST/SOAP invocation
An event can be published through modeling. Published event can choose between Synchronous calls like REST/WEB
service and Blocking event calls like Kafka Event. This ables analysis stage modeling to be used as an implementation.

24

CLASS-COURSE

Process Execution & Monitoring

• Simulatin g& Debugging modeled process

• Auto-creates a page to handle human tasks

• Shows payload and results when a micro-service is called

• Finds Error logs in the process

• Restarts and restores to previous phase from the error point

• Applies it to production after sucessful simulation

25

Exposing Process as REST Services
• Security, integration, performances about external paths to access micro services can controlled.

APIs need for new business requirements can be created through mash-up of existing micro service assets.

• The created process can be exposed right away in the shape of REST API or Kafka Event Consumer.

• Endpoint creation through service endpoint designation

• Correlation between invoker and process instance

26

Used OSS:
Zuul, Kafka

Operation
Phase

Open Cloud Engine

Canary Deployment 를 통하여 무정지 상태로 각 마이크로 서비스
별로 지속적인 개선과 수정이 가능하도록 함. (참고: 아마존의 경우
하루 23000회 배포를 하여 SaaS 서비스로서의 경쟁력을 내고 있음)

Virtual Server Containers

배포: 10% 단계 배포: 90% 단계

Old version New version Old version New version

자동화된 시스템 배포 및 확장
무정지 재배포

(Zero-downtime Deployment)

마이크로 서비스로 개발된 서비스들은 요청량에 따라 동적으로 워크로드가
분산되고 HA 구성이 이루어져 자원 가용률을 최대화하며 요청에 따른
운영노동력을 최소화 합니다.

지속적인 서비스의 출시를 위하여 배포할 서비스만을 격리하여
배포하면서도 연계된 서비스들과 동적으로 연계를 유지함(Contract-
based). 이러한 배포 과정은 자동으로 기계에 의하여 수행됨

앱1 앱2 앱 3

Zero-downtime Deployment & Scale

Self-healing and Canary Deployment
• Auto-healing and scaling:

Using Kubernetes engine, service
auto-healing and auto scaling can be
done. In OCE, provides the GUI for
that desired states and monitor for
the actions done by kubernetes
engine.

• Canary deployment:
Using L7-layer software routers, it is
ever easier for smart deployment
such as Canary deploy, AB Testing,
and Dark Launch (Shadow deploy).
OCE provides comprehensive GUI and
dashboard for controlling these
deployment strategies.

Utilized OSS:
Kubernetes, Istio

OCE provides production-grade DevOps dashboards and GUIs for
controlling and managing various application deployment strategies

Production Debugging

Distributed tracing and
monitoring measures for

production debugging and
reliable service operations.

Utilized OSS:
Naver Pinpoint, ELK

Values

Open Cloud Engine

Our target:
SOA MM7:
Dynamically Re-
configurable

Speed to digital transformation

SPEED

1. Microservice analysis and design with software
modeling tools (DDD modeling) and code
generation

2. DevOps environment of integrated GUI support for
utilizing K8S and Istio.

Software development is a learning

process,

working code is a side effect -

Martin Fowler

Model
Driven

Development

Cloud
Management
Platform

Business
Process

Management

Platform
As-A
Service

Enterprise
Social

Network

OMG Standard-
based
ALM

Open Source
Software
Management

3

Company Intro

BPM

