
Taeho Ahn
(thahn999@jam2in.com)

2015. 11. 17

ARCUS(Memory Cache Cloud System)
Overview and Use Cases

Part 1. ARCUS Overview

 Founded by ARCUS core developer last year.

 Facebook Page - https://www.facebook.com/jam2in

 Main Business

 Development: ARCUS, NoSQL, …

 Consulting, technical support, …

 Future Dev. Plans

 High availability: replication, data migration

 Key-value database cloud

 NoSQL(document database), Analytics, …

- 잼투인㈜

https://www.facebook.com/jam2in

 ARCUS [ɑ́:rkəs]: 아커스, a kind of cloud

 NAVER memcached cloud with list, set, and b+tree collections.

 History

 Started to develop ARCUS at NAVER since 2009.

 Used in a lot of NAVER services, until now.

 Opened to open source SW in May 2014.

Apache License 2.0.

 Dev. and support continued by JaM2in since August 2014.

 ARCUS URL - http://naver.github.io/arcus/

http://naver.github.io/arcus/

What need ARCUS ?

 Services that require high throughput and low latency.

 Services that want to reduce DB query load.

 Services that require data store easy to scale-out.

ARCUS Supported By

Who use ARCUS ?

NAVER Me, Café, Blog, Mail, Jisik-iN,

Shopping, News, and more

LINE Home, Timeline, Games, and more

BAND

KAKAO Story

Why ARCUS ?: DB Only

Service Applications

Write

Database

Read

 Large-scale Web Services

 Data growth

 Increased user requests

 Performance Issues

 Low throughput

 Slow response

 DB Issues

 High cost

 Hard to scale-out

Why ARCUS ?: Local Caching

Service Applications

Write

Database

Read

 Local Caching Issues

 Duplicate data

 Data inconsistency

 Its use is limited to primitive cache

 A small amount of data

 Immutable data

Cache Cache Cache Cache

 Ensure high-
performance

 Reduce DB load

 Cache large amount
of data

 Support Consistency

(1) DB Write

Database

Arcus Cache Cloud
(Remote Cache Cloud)

2) DB Read

1) Arcus
Get

3) Arcus
Set

(2) Arcus Delete

Service Applications

Why ARCUS ?: Remote Caching

ARCUS Technical Features

 Extended Key-Value data model based on Memcached

 Support data collection: List, Set, B+Tree

 High Performance

 High throughput of 100K~200K requests/sec (1 node)

 Avg. latency of less than 1ms.

 Elastic Cache Cloud based on ZooKeeper

 Scale-out, Automatic fail-stop, …

 Other Features

 Memory manager optimized for caching

 Getting/Setting key-value item attributes

 Dynamic configuration settings: maxconns, memlimit, …

ARCUS Architecture
Applications

Java/C Client
(consistent hashing)

Unified Cloud Admin
(Zookeeper Ensemble)

Monitoring
(Hubble)

Cache Cloud

Memcached
with Collection

ARCUS Cloud Management
Applications

Java/C Client
(consistent hashing)

Zookeeper Ensemble

Cache Cloud

Memcached
with Collection

<Cloud Name, Cache Node List>

Each cache node

 Register itself to ZK

when start.

 Unregister itself from

ZK when stop.

ZK removes the failed

node with timeout

based scheme.

Each client

 Fetch node list when

start or get ZK noti.

ZK notifies ARCUS

clients of node list

changes.

ARCUS Data Distribution

 Consistent Hashing

1. Construct the hash ring

with the hash values of all

cache nodes.

2. For a key, find the first

cache node encountered

with clock-wise direction

from the key hash value.

Hash Ring (2^32)
(The sorted hash values of all
cache nodes, maintained in

each ARCUS client.)

1000
…

1010
…

1011
…

key hash
1110…

node hash

A cache node is joined/leaved

(N: number of cache nodes)

Only the cache items in 1/N

cache node are re-mapped to

other cache nodes.

ARCUS Cache Cloud

 ARCUS Cache Cloud

 Distributed memory object caching system

 A set of ARCUS cache nodes

 ARCUS Cache Node

 Memory object caching node

 Hash table : main structure for storing <Key, Object> items.

 Expiration : auto-expiration after the specified time.

 Eviction : LRU based eviction in shortage of memory space.

ARCUS Data Model

Key-Value Data Model

 Key: a key-value item identifier

 Format: <prefix>:<subkey> (max 250 characters)

 <prefix>: manage a set of items in the logical group.

 <subkey>: identify an item in a set of items of the prefix.

 Value: an object stored/retrieved with a key.

 Simple key-value item : single value (max 1MB)

 Collection item : a collection of values

 max 50,000 elements

 max 4KB value in each element

ARCUS Collection Type
Type Features Use cases

in social media services

List Doubly linked list structure

 Access elements with list indexes

Set Extendable hash table structure

 An unordered set of unique data

 Membership checking

 Access an element with the value itself.

 Store friendships or

subscriptions info.

B+Tree B+tree structure

 An ordered data set based on b+tree key

 Access elements with bkey(b+tree key)

 Access elements with b+tree position.

 Store the post id list

of friends in reverse

time order.

 Fetch the latest N

post ids of friends.

ARCUS B+Tree Structrue

 B+Tree Item Structure

 B+Tree Meta Info

 ecount, bkey type, …

 Root node address

 Element Structure

bkey01

[eflag]

value

bkey02

[eflag]

value

bkey15

[eflag]

value

bkey75

[eflag]

value

bkey76

[eflag]

value

bkey95

[eflag]

value

... ...

...

<key, b+tree meta info>

bkey B+tree key, an unique value in b+tree.

 8 bytes unsigned integer / variable length(1~31) bytes array

[eflag] Optional element flag, used as filterable field.

 Variable length(1~31) bytes array

value Data field stored/retrieved together with bkey. (max 4KB)

ARCUS B+Tree Get

 B+Tree get
 <key> : <bkey_range, [eflag_filter,] [[offset,] count]>

 ==> a set of elements

Condition Description

bkey_range Mandatory, ascending or descending order

 Ex) 100..200, 200..100, 0x00AA..0x00FF

[eflag_filter] Optional filter condition applied to the value of eflag.

 [bitwise operator +] comparison operator

 bitwise : AND, OR, XOR

 comparison: EQ, NE, LT, LE, GT, GE, IN, NOT IN

[[offset,] count] Optional skip and retrieval count

ARCUS B+Tree Position Operations

 B+Tree find position

 <key> : <bkey, order> ==> a position

 <order>: ASC or DESC

 B+Tree get by position

 <key> : <order, position_range> ==> a set of elements

 B+Tree find position with get

 <key> : <bkey, order, count> ==> a set of <position, element> pairs

ARCUS B+Tree Sort-Merge Get Operation

 B+Tree smget

 <key_list> : <bkey_range, [eflag_filter,] [[offset,] count]>

 ==> a set of elements

Get elements with 30 >= bkey >= 10 from A, B, C

[28, 21, 20, 16, 15, 14, 12, 10]

0 7 14 21 28

A

1 5 10 15 20

B

3 6 9 12 16

C

10 1214 15 1620

ARCUS Operation List
Operation Type Operation List

Simple Key-Value get, set, add, replace, delete, incr/decr, …

List

Collection

Item create, drop

Element insert, delete, get

Set

Collection

Item create, drop

Element insert, delete, get, exist

B+Tree

Collection

Item create, drop

Element
insert/upsert, update, delete, get, count, incr/decr,

mget, smget, position, gbp, pwg

Other Operations getattr, setattr, flush, stats, config, …

ARCUS Client

 Data compression in java client

 Front caching in java client

Request

Arcus get

DB query

Arcus set
(DB query result)

Response

cache hit

cache miss

ehcache
Get

ehcache miss or expired

ehcache
set /extend

ehcache hit

optional

skip ehcache set

ARCUS Misc.

 OS – Linux Only

 CentOS 64bit - Fully tested

 Redhat/Ubuntu 64bit – Partially tested

 Clients Provided Officially

 Java, C

Part 2. ARCUS Use Cases

LINE Home/Timeline
 Home : Select posts that a certain friend can view.

 DB Issue : very difficult to use a general DBMS

 How to use ARCUS ?

 B+tree : maintain the postID list with group-permit per post

 Get the permitted postID list with eflag filtering on elements.

 Source - LINE Social Network Service Architecture (2014/06)

 http://d2.naver.com/helloworld/809802

// flags: 2^0=Family, 2^1=School, 2^2=Tennis, 2^3=Work, …

// 1. Select posts that any friend can view

SELECT * FROM post WHERE flags = 0;

// 2. Select posts that school and work friends can view

SELECT * FROM post WHERE (flags & (2^1 + 2^3)) or flags=0;

http://d2.naver.com/helloworld/809802

LINE Games
 Requirements

 View the ranking of an user score.

 View N <score, user> pairs before and behind a score.

 How to use ARCUS ?

 How to store top game scores ? B+Tree

 <bkey: score, data: userinfo>

 Request Case 1)

 Find a position with a <score, order(DESC)> pair.

 Find <score, userinfo> pairs with the position range or score range.

 Request Case 2)

 Find a position and <score, userinfo> pairs with score, order, count.

NAVER Me (1)

SELECT * FROM articles
WHERE feedid in (feedID1, feedID2, …, feedIDn) AND create_time < sysdate()
ORDER BY create_time DESC
LIMIT 20;

Cafe Blog

Contents on NAVER

etc ...

News
Web-
toon

Books Music

Jisik-iN

DB: view the latest 20 articles (large feed list => too slow)

NAVER Me (2)
Push(user inbox) vs. Pull(feed outbox & sort-merge get)

Subscription
Cache

(SET type)

subscriber – feed list

Feed’s Outbox Cache
(B+Tree type)

*bkey: create time
*data: article id

Article Cache
(K/V type)

articleid - contents

View
articles

0) Store the subscription

Subscribe
a feed

Create
a article

2) Store article id to feed outbox

(3) Get article contents

NAVER Me (3)

Subscription
Cache

(SET type)

feed – subscriber list

User’s Inbox
Cache

(B+Tree type)
*bkey: create time
*data: article id

Article Cache
(K/V type)

articleid - contents

View
articles

0) Store the subscription

Subscribe
a feed

Create
a article

3) Deliver to N subscribers inboxes

(2) Get article contents

Push(user inbox) vs. Pull(feed outbox & sort-merge get)

KAKAO Story
 How to use ARCUS ?

 Store user profiles, posts, friendships.

 Detailed use case is not published.

 Expected to be similar with NAVER Me case.

Part 3. ARCUS Open Source

ARCUS Open Source
 Opened Sources (opened by Naver)

 ARCUS cache server & Java/C clients

 Zookeeper library with Arcus modification

 ARCUS monitoring system (Hubble)

 Our contributions

 The first open source cache solution in Korea

 Soon, release the advanced ARCUS with high availability:

replication, data migration

 Good technical partner with large-scale web service providers

To be Expected…
 Contribute to develop various services and to improve

service quality

 Educate & train open source SW developers, especially

skilled in data technology

 Contribute to win-win partnership between (open source)

system SW and service development

Thank You !!

