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1. Program Overview

SHARK is a fast, modular, state-of-the-art, open-source C++ machine learning library . It is 

both a rich framework for academic research as well as a reliable and well-performing toolbox for 

real-world  pattern  recognition  applications.  The  Shark  library  features  many  unique 

algorithms to our knowledge not available in any other machine learning library. It also covers a 

broad range  of  well-established learning methods and  tools,  for  example  (recurrent)  neural 

networks, (binary, one- and true multi-class) support vector machines, algorithms for single- and 

multi-objective optimization, and many more. 

The three design goals of Shark are  speed, modularity, and portability.  We strive for 

notable  performance  with  regard  to  all  three  aspects  through  object-oriented  and  generic 

programming  using  templated  C++  code.  The  library  relies  on  only  two,  well-established 

external dependencies, namely the Boost  C++ Libraries and the CMake build system. The former 

ensures compatibility with the upcoming C++0x standard; allows for seamless integration of 

optimized math libraries for again faster linear algebra computations; and also makes it easy to 

use multi-core- and GPU-capable parallel processing directives, among others. 

The Shark Library is released under a GPL license (version 3 or later). 



1) Development goals (background, aims etc.)

Machine learning is a branch of computer science and applied statistics that is concerned with 

automated knowledge extraction from data [Bishop, 2006; Hastie et al., 2009]. Machine learning 

algorithms can be characterized as software that allows systems to improve their performance on a 

given task based on sample data or experience. In general,  machine learning algorithms have 

applications  in  countless  fields  such  as  computational  biology,  medical  technology,  computer 

vision, robotics, finance, search engines, spam filters, and many more.

Our  design goal  for  the  Shark  library  is  a  generic  and natural  framework  for  machine 

learning  algorithms.  The  library  should  not  "merely"  offer  valuable  features  in  itself,  but  also 

substantially  facilitate  design  and  implementation  of  new  learners (i.e.,  learning 

machines/algorithms) through its overall structure. In other words, we strive to provide a framework 

in which implementing a new learner is as easy as defining a single, for example, data-based loss 

function, which in turn can be naturally integrated with any of the existing models, optimizers, or  

other typical building blocks. At the same time, we aim for state-of-the-art performance in terms of 

computational  speed.  Finally,  we  want  Shark  to  be  portable  across  different  platforms  and 

compilers.  Our  design  goals  are  summarized  by  the  three  keywords  "speed,  modularity,  and 

portability".

The Shark code base has a history of over 15 years at the Institut für Neuroinformatik at  

Ruhr-University Bochum, Germany. A previous version was featured in Volume 9 of the Journal of 

Machine Learning Research [Igel et al.,  2008]. It was the first general machine learning library 

accepted by this flagship journal, which is the most prestigious label open-source machine learning 

software can get. However, as the Shark project was started more than 15 years ago, the software 

architecture of Shark 2.x has not been reflecting the state-of-the-art. Therefore, the library needed 

to be completely rewritten.

The  present  submission  constitutes  a  complete  from-scratch  rewrite of  the  previous 

Shark code base,  adding many new features and design concepts,  and vigorously unifying 

previously unconnected parts of the library under one common umbrella of design. 



2) System configuration

Supported hardware and operating systems

The Shark library relies on CMake as a portable build  system, as well  as on a fully portable, 

standard compliant  code base. This enables us to support  (at  least) the three major operating 

systems Unix, Mac OS X, and Windows together with a broad range of associated compilers. Both 

32- and 64-bit platforms are supported.

Library Structure

The Shark  main  directory  encompasses  include/ and  src/  directories  for  the  header  and 

source  files,  respectively.  On  the  same  level,  we  also  find  the  folders  doc/,  Test/ and 

examples/, which hold the Shark documentation, Shark unit test files, and Shark usage example 

files,  respectively.  The  remaining  folders  either  contain  binaries,  third-party  material,  or  build 

information. The include/ folder mirrors the basic library structure, which is divided into several 

core  components  (Core,  LinAlg,  Data,  Rng,  Statistics)  as  well  as  specific  branches 

pertaining to different  aspects in  the machine learning setting (Algorithms,  Fuzzy,  Models, 

ObjectiveFunctions).

 To get a first glimpse into Shark's well thought-out modular structure, let us consider the 

interplay between optimization and model training. In Shark 3 all optimization problems inherit the 

AbstractObjectiveFunction base class, and all optimization strategies (e.g., gradient-based 

or direct search methods) are derived from AbstractOptimizer. At this general level there is no 

explicit link to machine learning problems yet, such that it is easy to use the library for any type of 

optimization problem. Of course, the available methods are of relevance for machine learning.

 Next  consider  the  OptimizationTrainer class.  It  encapsulates  an  iterative  model 

training procedure by means of three objects: (i) a  SupervisedObjectiveFunction (typically 

an  ErrorFunction,  which in  turn  may be a data-coupled instance of  an  AbstractLoss or 

AbstractCost function, and may also possibly be combined with a regularizer); (ii) an optimizer, 

and (iii) a stopping criterion.

The last  component  is  encapsulated by  the  AbstractStoppingCriterion interface. 

This overall setup allows the OptimizationTrainer to make model training based on iterative 

optimization a single opaque step, while  at  the same time relying on infrastructure for generic 

optimization of an objective function.



Implemented Algorithms

Among others, Shark 3 currently supports:

• Supervised learning

• Linear discriminant analysis (LDA), Fisher–LDA

• Linear regression

• Support vector machines (SVMs) [Cortes and Vapnik, 1995] for one-class, binary 

and true multi-category classification [Dogan et al., 2011] as well as regression (the 

Shark SVM is the only SVM package implementing the fastest SMO-based learning 

algorithm for dense large-scale problems using hybrid maximum gain working set 

selection [Glasmachers and Igel, 2006])

• Feed-forward and recurrent multi-layer artificial neural networks [Bishop, 1995]

• Radial basis function networks [Bishop, 1995]

• Regularization networks [Poggio and Smale, 2003] as well as basic Gaussian 

processes [Rasmussen and Williams, 2006] for regression 

• Iterative nearest neighbor classification and regression [Border, 1990] 

• Unsupervised learning

• Principal component analysis

• Restricted Boltzmann machines [Hinton and Salakhutdinov, 2006] (including many 

state-of-the-art learning algorithms)

• Hierarchical clustering

• Data structures for efficient distance-based clustering

• Evolutionary algorithms

• Single-objective optimization (e.g., CMA–ES [Hansen and Ostermeier, 2001; Igel et 

al., 2007; Suttorp et al., 2009])

• Multi-objective optimization (in particular, highly efficient algorithms for computing as 

well as approximating the contributing hypervolume [Bringmann and Friedrich, 2008; 

Bringmann and Friedrich, 2009])

• Fuzzy systems

• Basic linear algebra and optimization algorithms (e.g., Rprop [Riedmiller, 1994; Igel and 

Hüsken, 2003])



Software Quality Management

The Shark library deploys a range of sophisticated methods and technologies to ensure a high 

level of software quality and to prevent from regressions. First and foremost, an extensive and 

ever-growing set of unit tests is available that reflects our approach of test-driven development. 

Moreover, a pre-commit review system is in place (see Figure 1), and every check-in to the central 

subversion repository triggers a built-test-package cycle for all of our supported platforms on our 

Figure 1: The pre-commit system ReviewBoard for the Shark library.

Figure 2: The continuous integration system Jenkins for the Shark library.



continuous integration system (see Figure 2). In addition we execute static code analysis to check 

for errors and to enforce our coding conventions

Deployment

Shark  is  available  as  a  precompiled  Debian  package,  as  a  precompiled  binary  package  for 

Microsoft Windows, and as a tarball for compilation from source. The installation procedure is well 

covered by corresponding documentation pages.

3) Menus

Shark does not offer a graphical user interface, and there are no plans to establish one in the 

future.  Our  focus  is  on  providing  fast  implementations  of  learning  algorithms  and  a  flexible 

framework  for  creating  new  ones.  A typical  application  using  Shark  is  a  C++  program  that 

sequentially calls different classes and functions of the Shark C++ library. While one could imagine 

using a graphical user interface for defining such a sequence, this in our case would simply be 

equivalent to a graphical tool for generating C++ code. Similarly, Shark does not offer a graphical 

user interface to visually explore the input data or the results generated by Shark. For this, we 

recommend existing open-source high-performance plotting and visualization libraries.

However,  Shark  will  support  ExtJS,  a  cross-browser  JavaScript  framework  for  building 

internet applications, which can be used for visualization independent of the operating system. 

Rudimentary support for ExtJS has already been added to Shark 3 and proof of concept prototypes 

exist. To this end, an HTTP server component will be incorporated with the Shark library that allows 

for  making  available  different  parts  of  the  library  (objective  functions,  optimizers  or  whole 

experiments) on the network via RESTful APIs.

4) Language used for development

Shark is developed purely in C++. In our view, C++ provides an optimal trade-off between higher-

level functionality and speed. At the time of this writing, we do not rely on any features defined as a 

part of C++0x. Some components, as for example those segments of the GLKP library shipped 

with Shark, rely on pure C code. Similarly, the functionality offered by the Boost uBLAS library can 

be  taken  over  by  other  implementations  of  the  BLAS  standard,  which  may  rely  on  different 

programming languages. In order to extend the Shark user base, the construction of Python (or, 

more general, SWIG) bindings is one of the goals for future development. 



5) Systems used

Hardware

Continuous integration server: Every commit to the Shark subversion repository triggers a build-

test-package cycle of the overall library for all our supported platforms. The continuous integration 

system is running on a custom server machine featuring 16 compute cores powered by 2 Intel 

Xeon CPUs. As the overall  build infrastructure is virtualized, 24GB of memory are deployed to 

render the system as performant as possible.

Pre-commit  review server:  The pre-commit  review system is  deployed on an off-the-shelf  Dell 

server running Ubuntu 10.04 and an Apache/Python/MySQL setup.

Web hosting: The Shark homepage as well as the development repository are hosted by the free 

software portal "Sourceforge.net".

Applications: The hardware on which to run Shark for actual applications will naturally vary with the 

nature and scale of each respective problem. While simple algorithms on small-scale problems 

may finish in fractions of a second on a single core, more competitive tasks like training Boltzmann 

machines or high-dimensional optimization may run for weeks on a cluster of cores. For example, 

we  successfully  carried  out  numerous  long-term  experiments  on  the  compute  cluster  of  the 

“Multimodal  Computing  and  Interaction”  cluster  of  excellence  located  at  the  Universität  des 

Saarlandes, Saarbrücken.

Software

Dependencies: We keep Shark as self-contained as possible. The Shark 3 package depends only 

on the Boost C++ libraries.  For building the Shark library,  CMake is used. For generating the 

documentation,  which  need  not  be  done  by  end  users,  documentation  generation  tools  are 

required (see below).  

Detailed overview over third-party code and tools:



The Boost libraries: Shark relies on the Boost C++ libraries (www.boost.org) for a number of 

tasks  such  as  efficient  linear  algebra  operations  on  dense  and  sparse  data  structures  and 

serialization. These well-established libraries provide stable solutions to many standard problems 

and are themselves  extremely  portable.  Thus,  the dependency on Boost  is  expected to even 

further increase the portability of Shark. The Boost libraries are available under the Boost software 

license, which is compatible with the GNU General Public License.

CMake:  We  use  the  CMake  build  system  (www.cmake.org)  to  compile  Shark  and  its 

accompanying example and unit test programs. CMake is quickly becoming a widespread standard 

and supports many platforms. CMake is available under the 3-clause (new/modified) BSD license.

GLPK:  Shark  for  convenience  ships  with  the  simplex  solver  from  GLPK,  the  GNU  Linear 

Programming  Kit  (www.gnu.org/software/glpk),  version  4.45.  GLPK  is  available  under  the 

GNU General Public License.

Figure 3: Class documentation using Doxygen.

http://www.boost.org/
http://www.gnu.org/software/glpk
http://www.cmake.org/


Documentation:  Shark  mainly  uses  the  de-facto  standard  Doxygen  (GPL  licensed, 

www.doxygen.org) for C++ in-code documentation extraction, see Figure 3. The Shark tutorials 

(see Figure 4 for an example) are converted from reStructuredText  markup to html via Sphinx 

(BSD  licensed,  http://sphinx.pocoo.org),  and  interface  the  Doxygen  documentation  via 

Doxylink (BSD licensed, http://pypi.python.org/pypi/sphinxcontrib-doxylink).

Documentation & learning how to use the library

All functionality can be looked up in the documentation generated by Doxygen. An example from 

the class list is shown in Figure 3. There are several ways to learn how to use the Shark library. It 

comes with online tutorials that explain the principles of the library and show how to apply it in  

practice.  An  example  is  shown  in  Figure  4.  Further,  the  software  is  shipped  with  example 

Figure 4: One of the tutorials explaining how to use the library.

http://pypi.python.org/pypi/sphinxcontrib-doxylink
http://sphinx.pocoo.org/
http://www.doxygen.org/


programs, which can be found in the subdirectory examples/. The unit tests in the subdirectory 

Test/ serve as additional examples of how to use the various components of the library.

6) Plan for each development stage

This present version of the Shark library has been completely re-written from the previous code 

base over the last 10 months. The structure of the library has been changed drastically. All the 

measures for software quality measurement outlined above have newly been added. To the Open 

Source Software World Challenge 2011, we submit an alpha pre-release version of the library. The 

goals for the remaining months of 2011 are:

• A better integration of the component for Fuzzy Systems.

• Improving the documentation, in particular adding more tutorials and example programs.

• Implementing some remaining features of  the previous release that  are not  yet  ported, 

especially  the  approximation  of  kernel  expansions  [Romdhani,  2004;  Suttorp  and  Igel, 

2007], k-means clustering, and missing components of the evolutionary algorithms toolbox.

• Implementing maximum likelihood model selection for binary SVMs [Glasmachers and Igel, 

2010].

• Optimization of the kernel-target alignment for (SVM) model selection [Igel et al., 2007].

• Extending the RBM (Restricted Boltzmann Machine) component. 

• Not all parts of the library yet fully adhere to the new Shark coding and documentation 

standards. These will be adapted accordingly.

After these steps, the full release of the all-new Shark 3.0 will be carried out. For the long-term 

development stages see part 2. of this proposal.

7) Number of personnel input and work assignment

Please refer to the enclosed "List of Team Members" for the names and respective main work 

areas  of  all  current  Shark  developers.  The  core  team  consists  of  six  developers,  for  which 

developing  the  Shark  library  mostly  coincides  with  their  full-time  academic  work  on  machine 

learning algorithms. In addition, a number of former Shark developers as well as regular users are 

contributing on a smaller scale. The team members' specialized work areas follow the division of 

the library into topical categories, cf. item 2).



2. Long-term prospects of the program developed (No specific form is required.)

Even before the current from-scratch rewrite, the Shark library (or its predecessor code base), had 

an established history of long-term continuation and support,  dating back over 15 years at the 

Institut  für  Neuroinformatik  at  the  Ruhr-University  in  Bochum,  Germany.  The  Shark  library's 

popularity has constantly risen over the past, with over 500 downloads in March 2011. For the 

future, we plan to:

• Increase the interaction with the user community and the number of contributing external 

developers.

• Add new learning algorithms to the library, in particular decision trees, random forests, as 

well as boosting and transfer learning algorithms.

• Complete the transfer of our reinforcement learning code base to Shark 3.

• Extend  the  Shark  user  base  by  providing  bindings  for  other  programming  languages, 

preferably via the SWIG interface generator tools.

• Further simplify the usability of generic multi-core and GPU processing directives for linear 

algebra  components  in  Shark.  Moreover,  stochastic  simulations  of  approximation 

algorithms, e.g., approximation of the least hypervolume contributor, on behalf of special-

purpose processors are part of our mid-term and long-term plans for the library.

• Offer Shark tutorials at machine learning conferences and summer schools.
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