#### 공개SW 솔루션 설치 & 활용 가이드



**kubernetes** 



How to Use Open Source Software

Open Source Software Installation & Application Guide





# CONTENTS

- 1. 개요
- 2. 기능요약
- 3. 기본구성
- 4. 설치 및 실행

## 1. 개요



| 소개        | • 구글의 15여년에 걸친 대규모 상용 워크로드 운영 경험에 의해 만들어짐.<br>• Container orchestration too      |          |                       |
|-----------|----------------------------------------------------------------------------------|----------|-----------------------|
| 주요기능      | • 서비스 디스커버리와 로드 밸런싱<br>• 스토리지 오케스트레이션<br>• 자동화된 복구(self-healing)<br>• 시크릿과 구성 관리 |          |                       |
| 대분류       | • 미들웨어                                                                           | 소분류      | • 클라우드서비스             |
| 라이선스형태    | Apache License v2.0                                                              | 사전설치 솔루션 | • 없음                  |
|           |                                                                                  | 버전       | • 1.25 (2022년 10월 기준) |
| 특징        | • 대규모 확장성                                                                        |          |                       |
|           | • 무한한 유연성                                                                        |          |                       |
| 개발회사/커뮤니티 | Cloud Native Computing Foundation                                                |          |                       |
| 공식 홈페이지   | • https://kubernetes.io/ko/                                                      |          |                       |

## 2. 기능요약



#### • Kubernetes 주요 기능

| 서비스 디스커버리와<br>로드 밸런싱      | DNS 이름을 사용하거나 자체 IP 주소를 사용하여 컨테이너를 노출할 수 있음.<br>컨테이너에 대한 트래픽이 많으면, 쿠버네티스는 네트워크 트래픽을 로드밸런싱하고<br>배포하여 배포가 안 정적으로 이루어질 수 있다     |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|
| 스토리지<br>오케스트레이션           | 로컬 저장소, 공용 클라우드 공급자 등과 같이 원하는 저장소 시스템을 자동으로 탑재 할<br>수 있다.                                                                    |  |  |
| 자동화된<br>롤아웃과 롤백           | 배포된 컨테이너의 원하는 상태를 서술할 수 있으며 현재 상태를 원하는 상태로 설정한<br>속 도에 따라 변경할 수 있음.                                                          |  |  |
| 자동화된 복구<br>(self-healing) | 실패한 컨테이너를 다시 시작하고, 컨테이너를 교체하며, '사용자 정의 상태 검사'에<br>응답 하지 않는 컨테이너를 죽이고, 서비스 준비가 끝날 때까지 그러한 과정을<br>클라이언트에 보여 주지 않는다.            |  |  |
| 시크릿과 구성 관리                | 암호, OAuth 토큰 및 ssh 키와 같은 중요한 정보를 저장하고 관리 할 수 있다. 컨테이너 이미지를 재구성하지 않고 스택 구성에 비밀을 노출하지 않고도 비밀 및 애플리케이션<br>구성을 배포 및 업데이트 할 수 있다. |  |  |















마스터 노드는 Kubernetes 클러스터의 상태를 관리하는 컨트롤 플레인을위한 실행 환경을 제공하며, 클러스터 내부의 모든 작업 뒤에 두뇌 역할

#### API Server (관제탑)

• 모든 관리 작업은 마스터 노드에서 실행되는 중앙 제어 플레인 구성 요소인 kube-apiserver에 의해 조정

#### Scheduler (할당)

• kube-scheduler 의 역할은 Pod,서비스등 각 리소스들을 적절한 노드에 할당하는 역할

#### Controller Managers (상태점검 및 조절)

- 제어기 매니저 는 Kubernetes 클러스터의 상태를 조절하는 제어기를 실행하는 마스터 노드에 대한 control plane 요소
- 각각의 컨트롤러를 생성하고 각 노드에 배포하며 이를 관리

#### etcd (모든 정보)

• etcd 는 Kubernetes 클러스터의 상태를 유지하는 데 사용되는 분산 키 - 값 데이터 저장소







워커 노드는 클라이언트 응용 프로그램을위한 실행 환경을 제공

#### kube-proxy

• 노드의 모든 네트워킹 규칙의 동적 업데이트 및 유지 보수에 대한 책임을 각 노드에서 실행되는 네트워크 에이전트

#### Addons for DNS, Dashboard, cluster-level monitoring and logging

- DNS 클러스터 DNS는 Kubernetes 객체 및 자원에 DNS 레코드를 할당하는 데 필요한 DNS 서버입니다.
- Dashboard 클러스터 관리를위한 일반적인 목적의 웹 기반 사용자 인터페이스
- 모니터링 클러스터 수준의 컨테이너 메트릭을 수집하여 중앙 데이터 저장소에저장합니다.
- 로깅 클러스터 수준 컨테이너 로그를 수집하여 분석을 위해 중앙 로그 저장소에 저장합니다.







#### Container runtime (엔진)

- Docker containerd 를 컨테이너 런타임으로 사용하는 컨테이너 플랫폼이지만 Kubernetes에서 가장 널리 사용되는 컨테이너 런타임입니다.
- CRI-O Kubernetes의 경량 컨테이너 런타임으로 Docker 이미지 레지스트리도 지원합니다.
- containerd 견고성을 제공하는 간단하고 휴대용 컨테이너 런타임

#### kubelet (선장)

• 각 노드에서 실행되는 에이전트와 마스터 노드로부터의 컨트롤 플레인 구성 요소와통신







#### Swap disable

```
$ swapoff -a
$ sed -i '/swap/s/^/#/' /etc/fstab
```

노드간 통신을 위한 브릿지 설정(마스터/노드)

```
$ cat <<EOF | tee /etc/modules-load.d/k8s.conf
$ br_netfilter
$ EOF
$ cat <<EOF | tee /etc/sysctl.d/k8s.conf
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
$ EOF</pre>
```





#### 노드간 통신을 위한 브릿지 설정(마스터/노드)

#### 설정 확인

\$ sysctl --system

```
net.ipv4.ping_group_range = 0 2147483647
net.core.default qdisc = fq codel
fs.protected hardlinks = 1
fs.protected symlinks = 1
fs.protected regular = 1
fs.protected_fifos = 1
 Applying /usr/lib/sysctl.d/50-pid-max.conf ...
kernel.pid max = 4194304
 Applying /usr/lib/sysctl.d/99-protect-links.conf ...
fs.protected fifos = 1
fs.protected hardlinks = 1
fs.protected regular = 2
fs.protected_symlinks = 1
 Applying /etc/sysctl.d/99-sysctl.conf ...
 Applying /etc/sysctl.d/k8s.conf ...
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
 Applying /etc/sysctl.conf ...
```







kubeadm, kubelet and kubectl 설치 및 성화(마스터/노드)

Kubernetes apt 저장소를 사용하는 데 필요한 apt 패키지 인덱스를 업데이트하고 패키지를 설치합니다.

\$ sudo apt-get update

\$ sudo apt-get install -y apt-transport-https ca-certificates cur

Google Cloud 공개 서명 키 다운로드:

\$ sudo curl -fsSLo /usr/share/keyrings/kubernetes-archive-keyring.gpg
https://packages.cloud.google.com/apt/doc/apt-key.gpg







kubeadm, kubelet and kubectl 설치 및 성화(마스터/노드)

Kubernetes apt 저장소를 추가합니다.

\$ echo "deb [signed-by=/usr/share/keyrings/kubernetes-archive-keyring.gp
https://apt.kubernetes.io/ kubernetes-xenial main" | sudo tee
/etc/apt/sources.list.d/kubernetes.list

apt 패키지 인덱스를 업데이트하고,

kubelet, kubbeadm 및 kubectl을 설치하고,

버전을 고정합니다.

\$ sudo apt-get update

\$ sudo apt-get install -y kubelet kubeadm kubect

\$ sudo apt-mark hold kubelet kubeadm kubect







마스터 노드 구성

아래 명령어를 통해 마스터노드에 ServerAPI, etcd, controller, scheduler, CoreDNS 구성

\$ kubeadm init

구성 완료되면 나오는 안내문 중 아래 실행

mkdir -p \$HOME/.kube

sudo cp -i /etc/kubernetes/admin.conf \$HOME/.kube/config

sudo chown \$(id -u):\$(id -g) \$HOME/.kube/config

또는

export KUBECONFIG=/etc/kubernetes/admin.con

아래 토큰값은 워커노드에서 마스터노드에 조인해줄 때 입력해주어야 하므로 따로 저장

kubeadm join 10.32.205.116:6443 --token a1x5ok.ae1ikcazri6y04e7

--discoverv-token-ca-cert-hash sha256:2f3e9309edf5f9e2c680eb2375a7f3d45a28a9c25b741066108ee0f56bb30f







#### 마스터 노드 구성

Pod network add-on 설치 공식홈페이지를 보면 여러가지를 제시해줌 그 중 weavenet으로 진행

\$ kubectl apply -f

https://github.com/weaveworks/weave/releases/download/v2.8.1/weave-daemon

set-k8s.yaml

설치 확인

\$ kubectl get nodes

STATUS 상태가 READY로 되어있다면 마스터노드 설정 완료

NAME STATUS ROLES AGE VERSION
linuxgeek-latitude-3520 Ready control-plane 24h v1.25.2







#### 워커 노드 구성

\$ kubeadm init만 실행하지 않고 마스터노드 구성과 같은방식으로 구성 구성한 후에는 따로 저장해둔 토큰을 입력해서 마스터노드와 조인해준다.

\$ kubeadm join 10.32.205.116:6443 --token a1x5ok.ae1ikcazri6y04e7

--discovery-token-ca-cert-hash

sha256:2f3e9309edf5f9e2c680eb2375a7f3d45a28a9c25b741066108ee0f56bb30f6

마스터노드에서 아래 명령어를 통해 워커노드 조인된 것을 확인

\$ kubectl get pod --all-namespaces





## **Open Source Software Installation & Application Guide**



