
Taeho Ahn
(thahn999@jam2in.com)

2015. 11. 17

ARCUS(Memory Cache Cloud System)
Overview and Use Cases

Part 1. ARCUS Overview

 Founded by ARCUS core developer last year.

 Facebook Page - https://www.facebook.com/jam2in

 Main Business

 Development: ARCUS, NoSQL, …

 Consulting, technical support, …

 Future Dev. Plans

 High availability: replication, data migration

 Key-value database cloud

 NoSQL(document database), Analytics, …

- 잼투인㈜

https://www.facebook.com/jam2in

 ARCUS [ɑ́:rkəs]: 아커스, a kind of cloud

 NAVER memcached cloud with list, set, and b+tree collections.

 History

 Started to develop ARCUS at NAVER since 2009.

 Used in a lot of NAVER services, until now.

 Opened to open source SW in May 2014.

Apache License 2.0.

 Dev. and support continued by JaM2in since August 2014.

 ARCUS URL - http://naver.github.io/arcus/

http://naver.github.io/arcus/

What need ARCUS ?

 Services that require high throughput and low latency.

 Services that want to reduce DB query load.

 Services that require data store easy to scale-out.

ARCUS Supported By

Who use ARCUS ?

NAVER Me, Café, Blog, Mail, Jisik-iN,

Shopping, News, and more

LINE Home, Timeline, Games, and more

BAND

KAKAO Story

Why ARCUS ?: DB Only

Service Applications

Write

Database

Read

 Large-scale Web Services

 Data growth

 Increased user requests

 Performance Issues

 Low throughput

 Slow response

 DB Issues

 High cost

 Hard to scale-out

Why ARCUS ?: Local Caching

Service Applications

Write

Database

Read

 Local Caching Issues

 Duplicate data

 Data inconsistency

 Its use is limited to primitive cache

 A small amount of data

 Immutable data

Cache Cache Cache Cache

 Ensure high-
performance

 Reduce DB load

 Cache large amount
of data

 Support Consistency

(1) DB Write

Database

Arcus Cache Cloud
(Remote Cache Cloud)

2) DB Read

1) Arcus
Get

3) Arcus
Set

(2) Arcus Delete

Service Applications

Why ARCUS ?: Remote Caching

ARCUS Technical Features

 Extended Key-Value data model based on Memcached

 Support data collection: List, Set, B+Tree

 High Performance

 High throughput of 100K~200K requests/sec (1 node)

 Avg. latency of less than 1ms.

 Elastic Cache Cloud based on ZooKeeper

 Scale-out, Automatic fail-stop, …

 Other Features

 Memory manager optimized for caching

 Getting/Setting key-value item attributes

 Dynamic configuration settings: maxconns, memlimit, …

ARCUS Architecture
Applications

Java/C Client
(consistent hashing)

Unified Cloud Admin
(Zookeeper Ensemble)

Monitoring
(Hubble)

Cache Cloud

Memcached
with Collection

ARCUS Cloud Management
Applications

Java/C Client
(consistent hashing)

Zookeeper Ensemble

Cache Cloud

Memcached
with Collection

<Cloud Name, Cache Node List>

Each cache node

 Register itself to ZK

when start.

 Unregister itself from

ZK when stop.

ZK removes the failed

node with timeout

based scheme.

Each client

 Fetch node list when

start or get ZK noti.

ZK notifies ARCUS

clients of node list

changes.

ARCUS Data Distribution

 Consistent Hashing

1. Construct the hash ring

with the hash values of all

cache nodes.

2. For a key, find the first

cache node encountered

with clock-wise direction

from the key hash value.

Hash Ring (2^32)
(The sorted hash values of all
cache nodes, maintained in

each ARCUS client.)

1000
…

1010
…

1011
…

key hash
1110…

node hash

A cache node is joined/leaved

(N: number of cache nodes)

Only the cache items in 1/N

cache node are re-mapped to

other cache nodes.

ARCUS Cache Cloud

 ARCUS Cache Cloud

 Distributed memory object caching system

 A set of ARCUS cache nodes

 ARCUS Cache Node

 Memory object caching node

 Hash table : main structure for storing <Key, Object> items.

 Expiration : auto-expiration after the specified time.

 Eviction : LRU based eviction in shortage of memory space.

ARCUS Data Model

Key-Value Data Model

 Key: a key-value item identifier

 Format: <prefix>:<subkey> (max 250 characters)

 <prefix>: manage a set of items in the logical group.

 <subkey>: identify an item in a set of items of the prefix.

 Value: an object stored/retrieved with a key.

 Simple key-value item : single value (max 1MB)

 Collection item : a collection of values

 max 50,000 elements

 max 4KB value in each element

ARCUS Collection Type
Type Features Use cases

in social media services

List  Doubly linked list structure

 Access elements with list indexes

Set  Extendable hash table structure

 An unordered set of unique data

 Membership checking

 Access an element with the value itself.

 Store friendships or

subscriptions info.

B+Tree  B+tree structure

 An ordered data set based on b+tree key

 Access elements with bkey(b+tree key)

 Access elements with b+tree position.

 Store the post id list

of friends in reverse

time order.

 Fetch the latest N

post ids of friends.

ARCUS B+Tree Structrue

 B+Tree Item Structure

 B+Tree Meta Info

 ecount, bkey type, …

 Root node address

 Element Structure

bkey01

[eflag]

value

bkey02

[eflag]

value

bkey15

[eflag]

value

bkey75

[eflag]

value

bkey76

[eflag]

value

bkey95

[eflag]

value

... ...

...

<key, b+tree meta info>

bkey  B+tree key, an unique value in b+tree.

 8 bytes unsigned integer / variable length(1~31) bytes array

[eflag]  Optional element flag, used as filterable field.

 Variable length(1~31) bytes array

value  Data field stored/retrieved together with bkey. (max 4KB)

ARCUS B+Tree Get

 B+Tree get
 <key> : <bkey_range, [eflag_filter,] [[offset,] count]>

 ==> a set of elements

Condition Description

bkey_range  Mandatory, ascending or descending order

 Ex) 100..200, 200..100, 0x00AA..0x00FF

[eflag_filter]  Optional filter condition applied to the value of eflag.

 [bitwise operator +] comparison operator

 bitwise : AND, OR, XOR

 comparison: EQ, NE, LT, LE, GT, GE, IN, NOT IN

[[offset,] count]  Optional skip and retrieval count

ARCUS B+Tree Position Operations

 B+Tree find position

 <key> : <bkey, order> ==> a position

 <order>: ASC or DESC

 B+Tree get by position

 <key> : <order, position_range> ==> a set of elements

 B+Tree find position with get

 <key> : <bkey, order, count> ==> a set of <position, element> pairs

ARCUS B+Tree Sort-Merge Get Operation

 B+Tree smget

 <key_list> : <bkey_range, [eflag_filter,] [[offset,] count]>

 ==> a set of elements

Get elements with 30 >= bkey >= 10 from A, B, C

[28, 21, 20, 16, 15, 14, 12, 10]

0 7 14 21 28

A

1 5 10 15 20

B

3 6 9 12 16

C

10 1214 15 1620

ARCUS Operation List
Operation Type Operation List

Simple Key-Value get, set, add, replace, delete, incr/decr, …

List

Collection

Item create, drop

Element insert, delete, get

Set

Collection

Item create, drop

Element insert, delete, get, exist

B+Tree

Collection

Item create, drop

Element
insert/upsert, update, delete, get, count, incr/decr,

mget, smget, position, gbp, pwg

Other Operations getattr, setattr, flush, stats, config, …

ARCUS Client

 Data compression in java client

 Front caching in java client

Request

Arcus get

DB query

Arcus set
(DB query result)

Response

cache hit

cache miss

ehcache
Get

ehcache miss or expired

ehcache
set /extend

ehcache hit

optional

skip ehcache set

ARCUS Misc.

 OS – Linux Only

 CentOS 64bit - Fully tested

 Redhat/Ubuntu 64bit – Partially tested

 Clients Provided Officially

 Java, C

Part 2. ARCUS Use Cases

LINE Home/Timeline
 Home : Select posts that a certain friend can view.

 DB Issue : very difficult to use a general DBMS

 How to use ARCUS ?

 B+tree : maintain the postID list with group-permit per post

 Get the permitted postID list with eflag filtering on elements.

 Source - LINE Social Network Service Architecture (2014/06)

 http://d2.naver.com/helloworld/809802

// flags: 2^0=Family, 2^1=School, 2^2=Tennis, 2^3=Work, …

// 1. Select posts that any friend can view

SELECT * FROM post WHERE flags = 0;

// 2. Select posts that school and work friends can view

SELECT * FROM post WHERE (flags & (2^1 + 2^3)) or flags=0;

http://d2.naver.com/helloworld/809802

LINE Games
 Requirements

 View the ranking of an user score.

 View N <score, user> pairs before and behind a score.

 How to use ARCUS ?

 How to store top game scores ? B+Tree

 <bkey: score, data: userinfo>

 Request Case 1)

 Find a position with a <score, order(DESC)> pair.

 Find <score, userinfo> pairs with the position range or score range.

 Request Case 2)

 Find a position and <score, userinfo> pairs with score, order, count.

NAVER Me (1)

SELECT * FROM articles
WHERE feedid in (feedID1, feedID2, …, feedIDn) AND create_time < sysdate()
ORDER BY create_time DESC
LIMIT 20;

Cafe Blog

Contents on NAVER

etc ...

News
Web-
toon

Books Music

Jisik-iN

DB: view the latest 20 articles (large feed list => too slow)

NAVER Me (2)
Push(user inbox) vs. Pull(feed outbox & sort-merge get)

Subscription
Cache

(SET type)

subscriber – feed list

Feed’s Outbox Cache
(B+Tree type)

*bkey: create time
*data: article id

Article Cache
(K/V type)

articleid - contents

View
articles

0) Store the subscription

Subscribe
a feed

Create
a article

2) Store article id to feed outbox

(3) Get article contents

NAVER Me (3)

Subscription
Cache

(SET type)

feed – subscriber list

User’s Inbox
Cache

(B+Tree type)
*bkey: create time
*data: article id

Article Cache
(K/V type)

articleid - contents

View
articles

0) Store the subscription

Subscribe
a feed

Create
a article

3) Deliver to N subscribers inboxes

(2) Get article contents

Push(user inbox) vs. Pull(feed outbox & sort-merge get)

KAKAO Story
 How to use ARCUS ?

 Store user profiles, posts, friendships.

 Detailed use case is not published.

 Expected to be similar with NAVER Me case.

Part 3. ARCUS Open Source

ARCUS Open Source
 Opened Sources (opened by Naver)

 ARCUS cache server & Java/C clients

 Zookeeper library with Arcus modification

 ARCUS monitoring system (Hubble)

 Our contributions

 The first open source cache solution in Korea

 Soon, release the advanced ARCUS with high availability:

replication, data migration

 Good technical partner with large-scale web service providers

To be Expected…
 Contribute to develop various services and to improve

service quality

 Educate & train open source SW developers, especially

skilled in data technology

 Contribute to win-win partnership between (open source)

system SW and service development

Thank You !!

