ARCUS(Memory Cache Cloud System)
Overview and Use Cases

@ ARCUS &S0

Taeho Ahn

(thahn999@jam2in.com)

2015. 11. 17

aM2in

Part 1. ARCUS Overview

aM2in - AE2I&

= Founded by ARCUS core developer last year.

v" Facebook Page — https://www.facebook.com/jam2in

= Main Business
v Development: ARCUS, NoSQL, ---

v" Consulting, technical support, -
= Future Dev. Plans
v" High availability: replication, data migration

v Key—value database cloud
v NoSQL(document database), Analytics, --

https://www.facebook.com/jam2in

@ ARCUSESHES

= ARCUS [a:rkos]: °FA 2, a kind of cloud

v NAVER memcached cloud with list, set, and b+tree collections.

= History
v Started to develop ARCUS at NAVER since 2009.
v Used in a lot of NAVER services, until now.
v Opened to open source SW in May 2014.
v" Apache License 2.0.
v" Dev. and support continued by JaMZ2in since August 2014.

@ ARCU

CACHE
CLOUD

ARCUS URL - http://naver.github.io/arcus/

TW=ErE
J/ C)naver/arcus P
2 -—tpe sithub.cem *N K] l
O This repository Search Explore Glst Blog Help '.l Jhparkgis =+~ O & I+

| | naver / arcus

/ [Arcus e

Arcus is the Naver Memcached with list]

24 commits

¥ branch: master ~ arcus / +

updated submedule: server 1.8.3

3. jhparkB16 authored 4 hours ago

M clients
B deps
M docs
scripts
P& server @ e7de29b
& zookeeper (@ 293149d
B .gilignore
B .gitmodules
B AUTHORS

B LICENSE

=

2

updated st
initial comr
Upciate ar¢
add "0 n
updated st
updated st
initial comr
Initial comt
initial comr

initial comr

W =lE o

L KN |

View on GitHub @
ARCUS

Arcus is Lhe NAVFR memcached cloud wilh lisl, sel and b+lree collections.

0FH £ (Arcus)= memcached 2 ZookeeperS J|BI2 2 |0/ (NAVER) MH|AS2 27 AME
= B WS HZ2S HA S22 E YLICH

OFH A= memcached EEEE2 = X200 LS8 memcached 7212 s 2 JUE &
XI&LICh.

o OFF L= BHOIE M A4 Ol OOICH] O] 22 2RO 9 XI5H0] hot-spot & 2{ 2] CI 0IC &
He a0, .&IHI&% GIH 2 SE4 HS52 GI0IEHH 0|2 fat 24,
= S AN SIS EUE = Moldl SO0 S8 UE56 NE
» SHAIS &6 02 Z=H 2= 20l HI0IH S&

A

=

1l

Ol A &= memcached= E &M CI22 10|

mo

HZ&tLICr

*» ZooKeeper J|Ht2| cache cloud 2|
s Callection A& 22~ flist. Set. R+treel L& =

http://naver.github.io/arcus/

What need ARCUS ?

= Services that require high throughput and low latency.
= Services that want to reduce DB query load.

= Services that require data store easy to scale—out.

ARCUS Supported By aMZ] N

Who use ARCUS ?

NAVER | NAVER Me, Café, Blog, Mail, Jisik—iN,
1 Shopping, News, and more

LINE Home, Timeline, Games, and more

m KAKAO Story

Why ARCUS ?: DB Only

Service Applications

e

Write

v

Read

= Large—scale Web Services
v' Data growth

v" Increased user requests

- &

» Performance Issues

v Low throughput
v" Slow response

= DB Issues

v" High cost
v' Hard to scale—out

Why ARCUS ?: Local Caching

Service Applications

q

g

q

Cache

Write

Cache

Cache

Cache

v

Read

= Local Caching Issues

v" Duplicate data

v" Data inconsistency

- &

= Its use is limited to primitive cache
v" A small amount of data

v' Immutable data

Why ARCUS ?: Remote Caching

Service Applications

O O O O (2) Arcus Delete

(1) DB Write

v

3) Arcus
Set

2) DB Read

1) Arcus
Get

i
=

Ensure high-
performance

Reduce DB load

Cache large amount
of data

Support Consistency

Arcus Cache Cloud

(Remote Cache Cloud)

ARCUS Technical Features

= Extended Key—Value data model based on Memcached

v" Support data collection: List, Set, B+ Tree

= High Performance ESEEEEED

v" High throughput of 100K~200K requests/sec (1 node)
v' Avg,. latency of less than 1ms.

= Elastic Cache Cloud based on ZooKeeper

v" Scale—out, Automatic fail-stop, -*-

» QOther Features

v Memory manager optimized for caching
v" Getting/Setting key—value item attributes

v Dynamic configuration settings: maxconns, memlimit, -+

ARCUS Architecture

Applications

/Java/ C Client \

(consistent hashing)

Cache Cloud

/ Memcached\

with Collection

5
P

ISSISNry

SRS

—_
=

<

1 Unified Cloud Admin

(Zookeeper Ensemble)

Monitoring

(Hubble)

ARCUS Cloud Management

Applications Each client Cache Cloud
/ \ Each cache node f \
Java/C Client = Fetch node list when Register itself to ZK Memcached
(consistent hashing) start or get ZK noti. & with Collection

when start.
ZK notifies ARCUS

. = Unregister itself from
clients of node list

ZK when stop.
changes. ZK removes the failed
node with timeout

based scheme.

pp

Zookeeper Ensemble
{Cloud Name, Cache Node List)

ARCUS Data Distribution

node hash

= Consistent Hashing

1. Construct the hash ring
with the hash values of all

cache nodes. kﬁ’f(‘)?ﬁh
. . Hash Ring (2732)
2. For a key, find the first (The sorted hash values of all
cache nodes, maintained in
cache node encountered each ARCUS client.)

with clock—wise direction

from the key hash value.

A cache node is joined/leaved j> Only the cache items in 1/N

(N: number of cache nodes) cache node are re—mapped to

other cache nodes.

ARCUS Cache Cloud

= ARCUS Cache Cloud

v" Distributed memory object caching system

v' A set of ARCUS cache nodes

= ARCUS Cache Node
v Memory object caching node

v' Hash table : main structure for storing <Key, Object) items.
v' Expiration : auto—expiration after the specified time.

v" Eviction : LRU based eviction in shortage of memory space.

ARCUS Data Model

Key—Value Data Model

= Key: a key—value item identifier
v' Format: {prefix) : {subkey) (max 250 characters)
v' <{prefix): manage a set of items in the logical group.

v' {subkey): identify an item in a set of items of the prefix.

= Value: an object stored/retrieved with a key.
v" Simple key—value item : single value (max 1MB)
v" Collection item : a collection of values
v' max 50,000 elements

v max 4KB value in each element

ARCUS Collection Type

List

Set

B+Tree

Doubly linked list structure

Access elements with list indexes

Extendable hash table structure
An unordered set of unique data
v" Membership checking

Access an element with the value itself.

B+tree structure
An ordered data set based on b+tree key
Access elements with bkey(b+tree key)

Access elements with b+tree position.

Store friendships or

subscriptions info.

Store the post id list
of friends in reverse
time order.

Fetch the latest N
post ids of friends.

ARCUS B+Tree Structrue

= B+Tree Item Structure

¢key, b+tree meta info)

= B+Tree Meta Info RN s ey
v' ecount, bkey type, - / , \ / !
bkeyl | [bkey02] [bkeyls bkey75| [bkey76| [bkey95
v Root node address .. o |—
leflag] || [eflag] leflag] [eflag] | | [efiag] [efiag]
= Element Structure value || value value value || value value
bkey = B+tree key, an unique value in b+tree.

= 8 bytes unsigned integer / variable length(1~31) bytes array

[eflag] |= Optional element flag, used as filterable field.
= Variable length(1~31) bytes array

value = Data field stored/retrieved together with bkey. (max 4KB)

ARCUS B+Tree Get

= B+Tree get

v (key) : {bkey_range, [eflag filter,] [[offset,] count])
v’ ==) a set of elements

bkey_range

[eflag_filter]

[[offset,] count]

Mandatory, ascending or descending order
Ex) 100..200, 200..100, 0x00AA..0x00FF

Optional filter condition applied to the value of eflag.
[bitwise operator +] comparison operator

v’ bitwise : AND, OR, XOR

v comparison: EQ, NE, LT, LE, GT, GE, IN, NOT IN

Optional skip and retrieval count

ARCUS B+Tree Position Operations

= B+Tree find position

v’ <key) : <bkey, order) ==) a position
v <order): ASC or DESC

= B+Tree get by position

v' <key) : <order, position_rangey ==) a set of elements

= B+Tree find position with get

v’ <key) : <{bkey, order, count) ==) a set of {position, element) pairs

ARCUS B+Tree Sort—Merge Get Operation

» B+Tree smget
v' <key_list) : <bkey_range, [eflag filter,] [[offset,] count])
v’ ==) a set of elements

oo
00000 00000

Get elements with 30)= bkey >= 10 from A, B, C

L

[28, 21, 20, 16, 15, 14, 12, 10]

ARCUS Operation List

Simple Key—Value

List

Collection

Set

Collection

B+Tree

Collection

Item
Element
Item
Element

Item

Element

Other Operations

get, set, add, replace, delete, incr/decr, -
create, drop

insert, delete, get

create, drop

insert, delete, get, exist

create, drop

insert/upsert, update, delete, get, count, incr/decr,

mget, smget, position, gbp, pwg

getattr, setattr, flush, stats, config, ---

ARCUS Client

= Data compression in java client

= Front caching in java client

Response
ehcache hit skip ehcache set
ehcache ehcache
Get set /extend

cachehit

ehcache miss or expired
Arcus set
A t
(DB query result)

cache miss

DB query

ARCUS Misc.

= OS - Linux Only
v CentOS 64bit — Fully tested
v Redhat/Ubuntu 64bit — Partially tested

= (lients Provided Officially
v Java, C

Part 2. ARCUS Use Cases

LINE Home/Timeline

= Home : Select posts that a certain friend can view.

= DB Issue : very difficult to use a general DBMS

// flags: 2”0=Family, 2"1=School, 2"2=Tennis, 2~ 3=Work, -
// 1. Select posts that any friend can view
SELECT * FROM post WHERE flags = 0;

// 2. Select posts that school and work friends can view

SELECT * FROM post WHERE (flags & (2”1 + 273)) or flags=0;

= How to use ARCUS ?

v’ B+tree : maintain the postID list with group—permit per post
v" Get the permitted postID list with eflag filtering on elements.

= Source — LINE Social Network Service Architecture (2014/06)
v" http://d2.naver.com/helloworld/809802

http://d2.naver.com/helloworld/809802

LINE Games

= Requirements
v View the ranking of an user score.

v" View N <score, user) pairs before and behind a score.

= How to use ARCUS ?

v" How to store top game scores 7 B+Tree
v' <bkey: score, data: userinfo)
v Request Case 1)
v" Find a position with a {score, order(DESC)) pair.
v Find {score, userinfo) pairs with the position range or score range.

v" Request Case 2)

v" Find a position and <score, userinfo) pairs with score, order, count.

NAVER Me (1)

Contents on NAVER

Cafe Blog
News | | Web- W7
toon

Books | | Music

O e
-
| BUL
™
L]
o
B
-]
]
-]
o s
"z

Jisik-iN| €t

DB: view the latest 20 articles (large feed list =) too slow)

SELECT * FROM articles

WHERE feedid in (feedID1, feedID2, -+, feedIDn) AND create_time < sysdate()
ORDER BY create_time DESC

LIMIT 20,

NAVER Me (2)

Push(user inbox) vs. Pull(feed outbox & sort—merge get)

a feed

Create
a article

View
articles

Subscribe % N
0) Store the subscription |

—
———Subscription—|
Cache
(SET type)

subscriber — feed list -

—

w
Feed’s Outbox Cache

w 2 (B+Tree type)
\ *bkey: create time
f . *data: article id
s) w

.

—
S

Article Cache

(K/V type)
articleid - contents

"

NAVER Me (3)

Push(user inbox) vs. Pull(feed outbox & sort—merge get)

Subscribe
a feed

Create
a article

View
articles

% 0) Store the subscription

é\‘

—

———Subscription—|
Cache

(SET type)

(2) Get article contents

~feed — subscriber list -

\User’s—lnbm/
Cache
(B+Tree type)

*bkey: create time
*data: article id~

—
S

Article Cache

(K/V type)
articleid - contents

\\\\4____,/

KAKAO Story

= How to use ARCUS ?

v" Store user profiles, posts, friendships.

v" Detailed use case is not published.

= Expected to be similar with NAVER Me case.

Part 3. ARCUS Open Source

ARCUS Open Source

= Opened Sources (opened by Naver)
v ARCUS cache server & Java/C clients

v' Zookeeper library with Arcus modification
v ARCUS monitoring system (Hubble)

» Qur contributions

v" The first open source cache solution in Korea

v" Soon, release the advanced ARCUS with high availability:

replication, data migration

v Good technical partner with large—scale web service providers

To be Expected:-:

= Contribute to develop various services and to improve

service quality

= Educate & train open source SW developers, especially

skilled in data technology

= Contribute to win—win partnership between (open source)

system SW and service development

Thank You !!

