
C Language Study Game
C - JUMP PL Kwon Yong Hyun

Jun Sang Gyun
Kim Sung Han
Kwon Duck Hyun

Contents

MotiveMotive1

ScenarioScenario2

ScheduleSchedule

ArchitectureArchitecture

Q n AQ n A5

3

4

MotiveMotive

However, Software?

● What is a famous IT brand in Korea?
● So, What is a famous IT brand in U.S.A?

Motive

Why?However, Software?

[Brand Image & Selling]
§This is a corporate image research.
§ It is because a focus on enterprise survey.

Why?

Motive
● They are taught from childhood to IT education.

Content But…Content

● They are less interested in IT.

• Experience in
providing early
childhood education
due to indirect

But…• limited to English,
mathematics, other
Arts and Physical
Education.

Motive

Funny

We need. Easy to learn, indirectly
and Fun ways to learn

Visual
effectsArithmetic MoreMore

C Language Study Game
C - JUMP

ScenarioScenario

ArchitectureArchitecture

System Architecture

Client Server DBTCP/IPTCP/IP

Shared
Map

Magic
Roulette Client Client Client

BluetoothBluetooth

Shared
Map

Hardware Architecture(1/3)

Dot MatrixDot Matrix BluetoothBluetooth

GameGame

IR SensorIR Sensor

DC MotorDC Motor

ATmega2560ATmega2560BatteryBattery

Hardware Architecture(2/3)

Switch

Roulette
Battery

Does not interest the typical die & Manipulation, and visualization
screen is provided by Roulette Dice!!

Dot Matrix

KEY

MCU

Hardware Architecture(3/3)

Contents

- Ball Caster
Vibration Suppression

- Ball Bearing
Friction Control

- Maker
Marker of number

- IR Sensor
Detection of number

- DC Motor
Roulette Rotation

- Ball Caster
Vibration Suppression

- Ball Bearing
Friction Control

- Maker
Marker of number

- IR Sensor
Detection of number

- DC Motor
Roulette Rotation

Software Architecture

C-Jump App

UI (WPF)

App Control (C#)

My SQL

Customized map
Module

Communicate Module

Socket

Bluetooth

Socket

File Control

DB Manager

Block Structure

if(x == 1)if(x == 1) {{
true

elseelse

false

Design Pattern

InterInter

B1B1B0B0 B2B2 BnBn.B1B1B0B0 B2B2 BnBn.

InterInter

Compiler Structure

Expression Analysis

if(x == 1)if(x == 1)

Symbol Table

== operatorLexerLexer == operator

x identifier

1 constant

LexerLexer

ParserParser

Block’s Syntax Analysis

if(x == 1) { … }
else { … }

stmt -> matched_stmt
| unmatched_stmt

matched_stmt -> if expr then matched_stmt else matched_stmt
| other

Unmatched_stmt -> if expr then stmt
| expr then matched_stmt else unmatched_stmt

CFG

Compiler CFG
<program> -> <block>
<block> -> { <stmts> }
<stmts> -> <stmt> <stmts> | ∈

<stmt> -> if (<equal>) { <stmts> } else { <stmts> }
| while (<equal>) { <stmts> }
| switch (<equal>) { <switch_block_stmt_group> ? <switch_labels> ? }
| <equal> ;
| break;

<switch_block_stmt_groups> -> <switch_block_stmt_group>
| <switch_block_stmt_groups> <switch_block_stmt_group>

<switch_block_stmt_group> -> <switch_labels> <stmts>
<switch_labels> -> <switch_label> | <switch_labels> <switch_label>
<switch_label> -> case num : <stmts>

| default : <stmts>
| }

<equal> -> <equal> == <rel>
| <equal> != <rel>
| <rel>

<rel> -> <rel> < <expr>
| <rel> <= <expr>
| <rel> > <expr>
| <rel> >= <expr>
| <expr>

<expr> -> <expr> + <term>
| <expr> - <term>
| <term>

<term> -> <term> * <unary>
| <term> / <unary>
| <unary>

<unary> -> <unary> ++ ;
| <unary> -- ;
| <factor>

<factor> -> (<expr>)
| num
| id

<program> -> <block>
<block> -> { <stmts> }
<stmts> -> <stmt> <stmts> | ∈

<stmt> -> if (<equal>) { <stmts> } else { <stmts> }
| while (<equal>) { <stmts> }
| switch (<equal>) { <switch_block_stmt_group> ? <switch_labels> ? }
| <equal> ;
| break;

<switch_block_stmt_groups> -> <switch_block_stmt_group>
| <switch_block_stmt_groups> <switch_block_stmt_group>

<switch_block_stmt_group> -> <switch_labels> <stmts>
<switch_labels> -> <switch_label> | <switch_labels> <switch_label>
<switch_label> -> case num : <stmts>

| default : <stmts>
| }

<equal> -> <equal> == <rel>
| <equal> != <rel>
| <rel>

<rel> -> <rel> < <expr>
| <rel> <= <expr>
| <rel> > <expr>
| <rel> >= <expr>
| <expr>

<expr> -> <expr> + <term>
| <expr> - <term>
| <term>

<term> -> <term> * <unary>
| <term> / <unary>
| <unary>

<unary> -> <unary> ++ ;
| <unary> -- ;
| <factor>

<factor> -> (<expr>)
| num
| id

Move Path
Before After

Not CrossingCrossing

Not DiagonalDiagonal

Before After

Assist
It is easy to use and

Just one click made C-grammar

FileFormat

향후발전방향

• C JUMP의제한적인 C언어모두지원

– 제어문, 함수, 포인터를통한연령대별지원

• Drag & Drop을이용한프로그래밍강화

• Game, Compiler, Map Edit 분리및모듈화

• C언어뿐만이아닌 Java 까지발전

• C JUMP의제한적인 C언어모두지원

– 제어문, 함수, 포인터를통한연령대별지원

• Drag & Drop을이용한프로그래밍강화

• Game, Compiler, Map Edit 분리및모듈화

• C언어뿐만이아닌 Java 까지발전

ScheduleSchedule

Kwon Yong Hyun 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week

Server Design

Network Protocol

Database

Server Implementation

File Format

Map Up/Down Load(Client)

Grade & Evaluate

File Save & Load

Map Editor Control Make

Drag & Drop

Magnet Effect

Undo

Move Path

Assistant

Test & Debug

Jun Sang Gyun 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week

Map Editor Design

Block Structure

BNF

Lexical Analysis

Syntax Analysis

Bluetooth Protocol

Bluetooth Data Parsing

Block Position Check

Source Extract

Error Line Check

Block Mapping

Assistant

Test & Debug

Kim Sung Han 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week

Game Rule

UI Control

Room Setting

BGM Sampling

Sound Management

Animation

Game UI Design

Turn Control

Map Preview

Tutorial Design

Score

Trainning Implements

Test & DebugTest & Debug

Kwon Duck Hyun 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week

Dot-Matrix Implements

Roulette Manufacture

Key Input Manufacture

Safety Circurit

Frame Manufacture

Firmware Programing

Temporary assembly

Test & Debug

Q n AQ n A

Thank You!

