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Background

Complex Physics Topics and New Capabilities

• Viscoelastic flow modelling

• Free surface flows with compressibility effects: under-water explosions

• Flash boiling simulations

• Block matrix in use: strong coupling in multi-phase VOF

• Some new fluid-structure interaction results

• New mesh handling features: Overset Grid Method, Immersed Boundary Method,
remeshing with Tetrahedral Edge Swapping

Industrial CFD Topics

• External aerodynamics with LES

• Simulations in metallurgical industry

• Radial Basis Function (RBF) and geometric shape optimisation

• OpenFOAM Turbo Tools

• Automotive Simulations

• Complex mesh motion cases
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Examples of Simulation

Example of Capabilities of OpenFOAM in Complex Physics and Industrial CFD

• This is only a part of the OpenFOAM capabilities!

• Chosen for relevance and illustration of the range of capabilities rather than
exhaustive illustration of range of capabilities

• In some cases, simplified geometry is used due to confidentiality

• Regularly, the work resulted in a new solver; in many cases, it is developed as an
extension or combination of existing capabilities

Description of Simulation and Setup

• Physics and numerical method setup

• Standard or customised solver; details of mesh resolution and customisation
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Viscoelastic Flow Model

MSc Thesis: Jovani Favero, Universidade Federal de Rio Grande del Sul, Brazil

• Viscoelastic flow model:
∇•u = 0

∂(ρu)

∂t
+ ∇•(ρuu) = −∇p + ∇•τs + ∇•τp

where τs = 2ηsD is the solvent stress contribution and τp is the polymeric part
of the stress , non-Newtonian in nature

• Depending on the model, τp is solved for: saddle-point problem

• Models introduce “upper”, “lower” or Gordon-Schowalter derivatives, but we shall
consider a general form: standard transport equation in relaxation form

∂τp

∂t
+ ∇•(uτp) =

τ
∗ − τp

δ

where δ is the relaxation time-scale

• Problem: τp dominates the behaviour and is explicit in the momentum equation
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Viscoelastic Flow Model

Model Implementation Recipe

• Recognise τ
∗ as the equilibrium stress value: make it implicit!

∇•τ
∗ = ∇•

»

κ•

1

2

“

∇u + (∇u)T
”

–

• Calculate implicit viscoelastic viscosity:

κ = τ
∗
•

»

1

2
(∇u + (∇u)T )

–−1

• Split complete stress into implicit and explicit component

∇•τp = ∇•τ
∗ + ∇•τcorr

= ∇•(κ•∇u) + ∇•τcorr

Examples of Simulations with OpenFOAM – p. 5



Viscoelastic Flow Model

Implemented Viscoelastic Models

• Kinetic Theory Models : Maxwell linear; UCM and Oldroyd-B; White-Metzner;
Larson; Cross; Carreau-Yasuda; Giesekus; FENE-P; FENE-CR

• Network Theory of Concentrated Solutions and Melts Models :
Phan-Thien-Tanner linear (LPTT); Phan-Thien-Tanner exponential (EPTT);
Feta-PTT

• Reptation Theory / Tube Models : Pom-Pom model; Double-equation eXtended
Pom-Pom (DXPP); Single-equation eXtended Pom-Pom (SXPP); Double
Convected Pom-Pom (DCPP)

• Multi-Mode Form : The value of τp is obtained by the sum of the K modes

τp =

n
X

K=1

τpK

Flow Solvers Implemented by Jovani Favero: Example Simulation

• Single-phase non-Newtonian solver based on transient SIMPLE

• Multi-phase free surface VOF solver: viscoelastic in each phase

• Support for topological changes: syringe ejection
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Multi-Phase Compressibility

Simulation of Under-Water Explosions

• This is ongoing collaboration with Johns Hopkins APL, Penn State University and
Wikki: working hard for almost a year

• Dominating effects of compressibility in air and water: massive change in density,
with propagating pressure waves

• Pressure ranges from 500 bar to 20 Pa

• Stiff numerics: collapse of over-expanded bubble due to combined compressibility
of both phases are the basis of the phenomenon

• Test cases: Rayleigh-Plesset oscillation, undex under a plate, explosion

• Eric Paterson, Scott Miller, David Boger, Penn State; Ashish Nedungadi, JHU-APL
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Multi-Phase Compressibility

First Simulations of Under-Water Explosions: Eric Paterson, Penn State

• Bubble of high initial pressure expands after explosion

• Initial pressure pulse is very fast - with little effect

• Bubble collapse creates re-entrant jer which pierces the free surface

• Stability problems resolved in segregated solver

• Next phase: block-coupled p − α solution algorithm
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Flash-Boiling Simulations

Flash-Boiling Flows: Shiva Gopalakrishnan, David P. Schmidt, UMass Amherst

• The fundamental difference between flash boiling and cavitation is that the process
has a higher saturation pressure and temperature: higher density

• Enthalpy required for phase change is provided by inter−phase heat transfer

• Jakob number : ratio of sensible heat available to amount of energy required for
phase change

Ja =
ρlcp∆T

ρvhfg

• Equilibrium models are successful for cavitation since Ja is large and timescale of
heat transfer is small. Flash boiling represents a finite rate heat transfer process:
Homogeneous Relaxation Model (HRM)

Dx

Dt
=

x̄ − x

Θ
; Θ = Θ0ǫ−0.54φ1.76

x is the quality (mass fraction), relaxing to the equilibrium x̄ over a time scale Θ

• The timescale Θ is obtained from empirical relationship: Downar–Zapolski [1996].
ǫ is the void fraction and φ is the non−dimensional pressure.
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Flash-Boiling Simulations

Flash-Boiling Flows: Numerical Method

• Conservation of Mass
∂ρ

∂t
+ ∇ · (φvρ) = 0

• Conservation of Momentum

(∂ρU0)

∂t
+ ∇ ·

`

φU0
´

= −∇pn + ∇ ·
`

µ∇U0
´

• Pressure Equation

1

ρ

∂ρ

∂p

˛

˛

˛

x,h

„

∂(ρpk+1)

∂t
+ ∇ · (ρUpk+1)

«

+ ρ∇ ·φ∗ − ρ∇
1

ap

∇pk+1

+ M
“

pk
”

+
∂M

∂p

“

pk+1 − pk
”

= 0

The HRM model term is denoted as M(= Dx
Dt

). The superscripts k and k + 1 are
the corrector steps for the pressure equation.
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Flash-Boiling Simulations

Conservation of Mass
solve
(

fvm::ddt(rho) + fvm::div(phiv, rho)
);

Conservation of Momentum
fvVectorMatrix UEqn
(

fvm::ddt(rho, U) + fvm::div(phi, U) - fvm::laplacian(mu, U)
);
solve(UEqn == -fvc::grad(p));

Pressure Equation
fvScalarMatrix pEqn(fvm::laplacian(rUA, p));

solve
(

psi/sqr(rho)*(fvm::ddt(rho, p) + fvm::div(phi, p))
+ fvc::div(phivStar) - pEqn
+ MSave + fvm::SuSp(dMdp, p) - dMdp*pSave

);
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Flash-Boiling Simulations

Asymmetric Fuel Injector Nozzle-Design from Bosch GmbH.
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Block Matrix in Use: Multi-Phase VOF

Multi-Phase Volume-of-Fluid Solver

• System of equations contains multiple VOF equations and global continuity
handled by a pressure equation in standard form

• The phase for which VOF is solved first dominates the other phases: this is not
acceptable; flipping the order of solution moves the problem around

• Aim: Coupled pressure based approach to achieve physical behavi our

• Solution strategy: solve αi transport equations, volumetric continuity and closure
equation in a strongly coupled manner, making the coupling terms implicit!

• To make this run, we shall use the block matrix and block solver (Jasak and
Clifford, 2009)

• Credit goes to Kathrin Kissling and Julia Springer, NUMAP-FOAM 2009
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Block Matrix in Use: Multi-Phase VOF

Multi-Phase Volume-of-Fluid Solver: Equation Set and Coupling

• Volume fraction transport equation, with separated pressure-driven flux terms
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• Pressure equation, with separated phase fluxes (coupling terms)
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• Closure equation and definition of fluxes
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Block Matrix in Use: Multi-Phase VOF

Multi-Phase Volume-of-Fluid Solver: Solution Strategy

• Above equations are dumped into a block matrix format, with coefficient size N + 1:
(p∗, αi) and solved in a block-coupled manner

• Result: strong coupling between αs and p: no dominant phase

t = 0 t = 1 t = 2

t = 5t = 4t = 3
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Fluid-Structure Interaction

Fluid-Structure Coupling Capabilities in OpenFOAM

• As a Continuum Mechanics solver, OpenFOAM can deal with both fluid and
structure components: easier setup of coupling

• (Parallelised) surface coupling tools implemented in library form: facilitate coupling
to external solvers without “coupling libraries” using proxy surface mesh

• Structural mechanics in OpenFOAM targeted to non-linear phenomena: consider
best combination of tools
◦ Large deformation formulation in absolute Lagrangian formulation

◦ Independent parallelisation in the fluid and solid domain

◦ Parallelised data transfer in FSI coupling

• Dynamic mesh tools and boundary handling used to manipulate the fluid mesh
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Overset Grid in OpenFOAM

foamedOver: Overset Grid Technology in OpenFOAM

• Work by David Boger, Penn State University using SUGGAR and DirtLib libraries
developed by Ralph Noack, Penn State (must mention Eric Paterson!)

• Overset Grid Technology

◦ Multiple components meshed individually, with overlap
◦ Hole cutting algorithm to remove excess overlap cells

◦ Mesh-to-mesh interpolation with implicit updates built into patch field updates
and linear solver out-of-core operations

• Body-fitted component meshes: preserving quality and near-wall resolution

• Simple mesh motion and geometrical studies (replacing individual components)

• Overset grid is physics-neutral! Currently testing for free surface flows
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Immersed Boundary Method

Immersed Boundary Method

• Handling of moving obstacles in the flow domain whose size is larger than mesh
resolution: covering multiple cells

• Mesh topology and connectivity does not change: immersed STL surface

• Presence of boundary implicitly accounted for in discretisation, with appropriate
handling of boundary conditions

Fluid cells

Immersed Boundary

ibPolyPatch

φb

φP

Pibb

φib

PP Pb

P’
kib

δib

ib
δ
′

ib

nib

nb
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Immersed Boundary Method

Immersed Boundary Method: Examples

• Laminar flow around a 2-D moving circular cylinder in a channel

• Laminar flow around two counter-rotating elements in a cavity
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Tetrahedral Edge Swapping

Re-Meshing with Tetrahedral Edge Swapping

• In cases where mesh motion involves topological change at the boundary or
unpredictable mesh deformation, topological change machinery is impractical:
cannot decide a-priori where to place topology modifiers

• Dynamic remeshing using tetrahedral edge swapping
◦ Motion is prescribed on external boundaries
◦ Tetrahedral cell quality examined continuously: bad cells trigger automatic

remeshing without user interaction: answers to dynamicMesh interface

◦ Implemented by Sandeep Menon, UMass Amherst as a ready-to-use library

• Example: viscoelastic droplet collision using free surface tracking

• Can be used for all dynamic mesh cases: ultimate ease of mesh setup!
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External Aerodynamics with LES

Detached Eddy Simulation for External Aerodynamics

• Pushing state-of-the-art by applying Detached Eddy Simulation (DES) to full car
body external aerodynamics simulations: native solver and mesher, no change

• Increase in simulation cost over transient RANS is over 1 order of magnitude!

• Controlling the Cost of Full Car DES :

◦ Automated meshing and simulation environment, from STL surface of the car
body to averaged DES results and forces

◦ Hex-core mesher with near-wall layers and local refinement: mesh is
designed to make it good for second-order LES numerics with minimal cost

◦ No parallel license cost of CFD solver: simulations run on approx. 200 CPUs

• Improvement in CD, CL and force-per-component predictions due to better
capturing of turbulence and transient flow features

Reproduced with permission SAE 2009-01-0333, Islam et.al.
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CFD in Metallurgical Applications

Three-Phase Free Surface Flow in a Tundish

• 3 phases with extreme density ratio: liquid steel, liquid slag, air (7000:2500:1)

• Note the presence of multiple phase-to-phase interfaces: using consistent
discretisation for multiple phase α equations

• Temperature-dependent properties of slag and steel

• Simultaneous filling and pouring with large outlet velocity

• Examples

◦ Simulation of a Turbo-Stop device for initial fill

◦ Simulated break-down of a slag layer: detail of flow at exit nozzle
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CFD in Metallurgical Applications

Assembling a Matrix for Conjugate Heat Transfer Problems

• OpenFOAM supports multi-region simulations, with possibility of separate
addressing and physics for each mesh: multiple meshes, with local fields

• Some equations present only locally, while others span multiple meshes

coupledFvScalarMatrix TEqns(2);

TEqns.hook
(

fvm::ddt(T) + fvm::div(phi, T)
- fvm::laplacian(DT, T)

);

TEqns.hook
(

fvm::ddt(Tsolid) - fvm::laplacian(DTsolid, Tsolid)
);

TEqns.solve();

• Coupled solver handles multiple matrices together in internal solver sweeps:
arbitrary matrix-to-matrix and domain-to-domain coupling
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CFD in Metallurgical Applications

Conjugate Heat Transfer and Thermal Shock

• Coupling may be established geometrically: adjacent surface pairs

• Each variable is stored only on a mesh where it is active: (U, p, T)

• Choice of conjugate variables is completely arbitrary: e.g. catalytic reactions

• Coupling is established only per-variable: handling a general coupled complex
physics problem rather than conjugate heat transfer problem specifically

• Allows additional models to be solved on each region without overhead: structural
stress analysis, turbulence or LES

Examples of Simulations with OpenFOAM – p. 24



Radial Basis Function

Radial Basis Function Interpolation

• General interpolation for clouds of points

• Mathematical tool which allows data interpolation from a small set of control points
to space with smoothness criteria built into the derivation

• Used for mesh motion in cases of large deformation: no inverted faces or cells

• Implemented by Frank Bos, TU Delft and Dubravko Matijašević, FSB Zagreb
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Radial Basis Function

RBF Mesh Morphing Object

• RBF morphing object defines the parametrisation of geometry (space):

1. Control points in space, where the parametrised control motion is defined

2. Static points in space, whose motion is blocked

3. Range of motion at each control point: (d0,d1)

4. Set of scalar parameters δ for control points, defining current motion as

d(δ) = d0 + δ(d1 − d0), where 0 ≤ δ ≤ 1

• For each set of δ parameters, mesh deformation is achieved by interpolating
motion of control points d over all vertices of the mesh: new deformed state of the
geometry

• Mesh in motion remains valid since RBF satisfies smoothness criteria

Using RBF in Optimisation

• Control points may be moved individually or share δ values: further reduction in
dimension of parametrisation of space

• Mesh morphing state is defined in terms of δ parameters: to be controlled by the
optimisation algorithm
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RBF Morphing

RBF Morphing Example: Morphing of a Cylinder

• Control points in motion:

Point Motion range
(-0.02 -0.02 0) ((0 0 0) (-0.01 0.01 0))
( 0.02 -0.02 0) ((0 0 0) (0.2 0.0 0))
(-0.02 0.02 0) ((0 0 0) (-0.01 -0.01 0))
( 0.02 0.02 0) ((0 0 0) (0.02 0 0))

• Note: parametrisation uses a single parameter δ for this motion
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RBF Morphing

RBF Morphing Example: Morphing of a Sphere

• Control points in motion:

Point Motion range
(-0.3 ±0.3±0.3) (( 0 0 0) (±0.1 ±0.1 ±0.1))
( 0.3 ±0.3±0.3) (( 0 0 0) (±0.1 ±0.1 ±0.1))

( 0.7 0 0) (( 0 0 0) (0.3 0 0))

• Note: parametrisation uses a single parameter δ for this motion

• Optimisation shall be performed with 3 parameters: front, back, tail
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Geometric Shape Optimisation

Geometric Shape Optimisation with Parametrised Geometry

• Specify a desired object of optimisation and use the parametrisation of geometry
to explore the allowed solution space in order to find the minimum of the
optimisation objective

objective = f(shape)

1. Parametrisation of Geometry
• Computational geometry is complex and usually available as the

computational mesh: a large amount of data

• Parametrisation tool: RBF mesh morphing , defining deformation at a small
number of mesh-independent points in space

2. CFD Flow Solver is used to provide the flow solution on the current geometry, in
preparation for objective evaluation

3. Evaluation of Objective : usually a derived property of the flow solution

4. Optimiser Algorithm : explores the solution space by providing sets of shape

coordinates and receiving the value of objective. The search algorithm iteratively
limits the space of solutions in search of a minimum value of objective
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Geometric Shape Optimisation

3-D Sphere: Minimising Drag Force

• Using 9 control points in motion, with symmetry constraints: 4 points in front
square, radial motion; 4 points in back square, radial and axial motion; 1 tail point,
axial motion only

• Optimisation is performed with 3 parameters:

iter = 1 pos = (0.2 0.7 0.2) v = 147.96 size = 0.2997
iter = 5 pos = (0.06111 0.7092 0.7092) v = 106.26 size = 0.2153
iter = 12 pos = (0.03727 0.9354 0.3830) v = 77.934 size = 0.0793
iter = 22 pos = (0.04095 0.9458 0.3413) v = 75.821 size = 0.006610

Examples of Simulations with OpenFOAM – p. 30



Geometric Shape Optimisation

HVAC 90 deg Bend: Flow Uniformity at Outlet

• Flow solver: incompressible steady-turbulent flow, RANS k − ǫ model; coarse
mesh: 40 000 cells; 87 evaluations of objective with CFD restart

• RBF morphing: 3 control points in motion, symmetry constraints; 34 in total

• Objective: flow uniformity at outlet plane

iter = 0 pos = (0.9 0.1 0.1) v = 22.914 size = 0.69282
iter = 5 pos = (0.1 0.1 0.1) v = 23.0088 size = 0.584096
iter = 61 pos = ((0.990164 0.992598 0.996147) v = 13.5433 size = 0.000957122
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OpenFOAM Turbo Tools

General Grid Interface

• Turbomachinery CFD requires additional features: implemented in library form

• General Grid Interface (GGI) and its derived forms

◦ Cyclic GGI

◦ Partial overlap GGI

◦ Mixing plane interface (under testing)

• Implementation and parallelisation is complete: currently running validation cases
in collaboration with commercial clients and Turbomachinery Working Group

• Other turbo-related components in pipeline: harmonic balance solver solver

• Library-level implementation allows re-use of GGI beyond turbomachinery
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Automotive Applications

Modelling Diesel Particular Filters: Federico Piscaglia, Politecnico di Milano

• Steady-state compressible flow through thin porous layers

• Detailed 3-D meshing of channels expensive: mesh resolution requirements

• . . . but due to flow non-uniformity, channel-scale simulations cannot provide the
answer: not all channels are equally loaded and energy equation is solved globally

• Solution: multi-scale filter model
◦ Each channel is one cell thick: (1-D) simulation

◦ Porosity is a face property; flow friction is a volumetric sink

◦ Porous faces are assigned time-dependent filtration efficiency due to soot
deposition, affecting the flow and species distribution

• Automatic meshing tool for the monolith, unstructured mesh for inlet and outlet
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Automotive Applications

Spray, Wall Film and Combustion Simulations in Internal Combustion Engines

• Complete simulation of spray injection, evaporation, wall film and combustion in a
GDI engine. Mesh motion and topological changes as shown before

• Basic flow solver, automatic mesh motion , topological changes used in standard
form. Simulation includes intake stroke (moving piston + valves): reverse tumble

• Full suite of Diesel spray modelling using Lagrangian modelling framework

• Implementation of wall film and spray-film interaction: Željko Tuković, FSB

• Mesh sensitivity of spray penetration : solved with adaptive refinement!

• Authors of engine simulations: Tommaso Lucchini, Gianluca D’Errico, Daniele
Ettore, Politecnico di Milano and Dr. Federico Brusiani, University of Bologna
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Complex Mesh Motion

6-DOF Floating Body in Free Surface Flow

• Flow solver : turbulent VOF free surface, with moving mesh support

• Mesh motion depends on the forces on the hull: 6-DOF solver

• 6-DOF solver : ODE + ODESolver energy-conserving numerics implemented
using quaternions, with optional elastic/damped support

• Variable diffusivity Laplacian motion solver with 6-DOF boundary motion as the
boundary condition for the mesh motion equation

• Topological changes to preserve mesh quality on capsize

• Coupled transient solution of flow equations and 6-DOF motion, force calculation
and automatic mesh motion: custom solver is built from library components
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Summary

Project Status Summary

• OpenFOAM is a free software, available to all at no charge: GNU Public License

• Object-oriented approach facilitates model implementation

• Equation mimicking opens new grounds in Computational Continuum Mechanics

• Extensive capabilities already implemented; open design for easy customisation

• Solvers are validated in detail and match the efficiency of commercial codes

• Open Source model dramatically drops the cost of industrial CFD

OpenFOAM in Research and Industry

• Technical development driven by Special Interest Groups & Birds-of-a-Feather

Turbomachinery Ship Hydrodynamics Simulation of Engines

Turbulence Fluid-Structure Interaction Multiphase Flows

Aeroacoustics Combustion and explosions Solid Mechanics

Documentation High Performance Computing OpenFOAM in Teaching

• Sixth OpenFOAM Workshop : Penn State University 13-16 June 2011
http://www.openfoamworkshop.org
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