S
O

2 SW7} E|AEIS abLiCh
1445-1530/20150429/4+
A Qe sCHIM12FO0LLI0|AE

A|5H 0l Sef 2AE| M2
SW=E AlZfslS Sof

HEA|

Quality Assurance Engineer@NBT Partners
SonarQube Korean Localization Lead

el

95
S
S
(o8]
8,
=

ertify your codes

|
|

Sor
e most powerful &

tool to c

R T
Ho o
o
N
<

D4 creatinov.kim@gmail.com
(83 www.creatinov.org
K3 https://www.facebook.com/groups/korea.sonarqube.user.group/

FOCUS

v’ Code Quality
v’ Code Review
v Static Analysis
v’ SonarQube *+ ¢

Code Quality

What is good code?

Bjarne Stroustrup

Inventor of C++ and author of The C++ Programming Language

I like my code to be elegant and efficient. The logic should be
straightforward to make it hard for bugs to hide, the
dependencies minimal to ease maintenance, error handling
complete according to an articulated strategy, and performance
close to optimal so as not to tempt people to make the code messy
with unprincipled optimizations. Clean code does one thing well.

You know you are working on clean code when each routine
you read turns out to be pretty much what you expected.
You can call it beautiful code when the code also makes it
look like the language was made for the problem.

Ward Cunningham

Inventor of Wiki/ Fit. Co-inventor of eXtreme Programming.
Motive force behind Design Patterns. Smalltalk and OO thought leader.
The godfatehr of all those who care about code

Robert C. Martin Series

Clean Code

A Handbook of Agile Software Craftsmanship

Robert C. Martin

Contents xi
Chapter 7: Error Handling 103
Use Exceptions Rather Than Return Codes 104
Write Your Try-Catch-Finally Statement First 105
Use Unchecked Excep 106
Provide Context with Exceptio 107
Define Exception Classes in Torms ofa Caler's Newds11 1107
Define the Normal Flow 109
Don’t Return Null 110
Don’t Pass Null 111
Concl 12
ibli)y 12
Chapter 8: Boundaries 13
Using Third-Party Code. 114
Exploring and Learning Boundaries 116
Learning log43 116
Learning Tests Are Better Than Free. 18
Using Code That Does Not Yet Exist. 118
Clean Boundaries 120
ibli 120
Chapter 9: Unit Tests 121
The Three Laws of TDD 122
123
124
124
¢ Testing Language. 127

A Dual Standard 1
One Assert per Test 130
ﬁmﬂk Concept per Test 131
132
133
133
Chapter 10: Classes 135
Class Org 136
136

vii Contents Contents ix x Contents
Avoid Encodings Prefer Exceptions to Returning Error Codes 46 C d-Out Cod 6
Hungarian Notation 3 Extract Try/Catch Blocks . HTML Comments
(‘Ontents Member Prefi 4 Error Handling Is One T Nonlocal
Interfaces and 24 The Error Dependency Magnet Too Much
Avoid Mental Mapping s Don’t Repeat Yourself Inobvious Connection.
Class Names 5 i Function Headers
Method Name: 2 How Do You Write Functions Like T P Javadocs in Nonpublic Code
Foreword xix Don’t Be Cute 6 Conclusion 49 _ Example
Pick Onc Word per Concept 6 Includer 0
Introduction v Don’t Pun 26 Bibliogra 5
graphy 2 <. " .
Use Solution Domain Names 27 hapter & Farmatiing 7
On the Cover. xxix Use Problem Domain Name 27 Chapter 4: C 3 \"” "“:l;“‘c of :""‘"‘“'“g Zf‘
Add Context 27 Comments Do Not Make Up for Bad Code. 55 _”‘“\I Format i i
Chapter 1: Clean Code 1 Don’t Add Gratuitous Context 9 Explain Yourself in Code s B e opaper Meaphor
o ” 2 Vertical Openness Between Concepts 78
2 Final Word: 30 Good Comments 5
Legal Comme Vertical Density 79
o PP | . Functi cgal Comment Vertical Distance 0
The Total Cost of Owning a Mess 4 Chapter 3: Functions 31 Comment 6 Vertical Ordering 4
The Grand Redesign in the Sky 5 Small! 34 Explanation of Intent 56 irontal Formatt
2 i Horizontal For s

Attitude 5 Blocks and Indenting 35 Clarification 7 !

: : ¢ ? Horizontal Openness and DEnSity ..o 36

The Primal Conundrum 6 Do One Thing Warning of C 3 Horbrontal Abanment 5

The Art of Clean Code? 6 Sections within Functions ... 36 TODO Comment 58 Indentation......

What Is Clean Code? 7 One Level of Abstraction per Function 36 if 9 Dummy Seones 00
Schools of Thought. 12 Reading Code from Top to Bottom: The Stepdovn Rule. 37 Javadocs in Public API 9 Team Rule 9%
We Are Authors 13 Switch 37 Bad Comments 9 Uncle Bob’s Formatting Rules. 90
The Boy Scout Rule 14 Use Descriptive Name: 39 Mumbling 9
Prequel and Principles 15 Function 40 Redundant Comments 60 Chapter 6: Objects and Data Structures 93
Conc 15 Common Monadic Form: 41 Misleading Comment 63 Data 93

ibli 15 Flag Arguments 41 Mandated Comments 63 Data/Object Anti-Symmetry 95
Dyadic Function: 42 Journal Comment 6 The Law of Demeter 97

Chapter 2: Names 17 d 42 Noise Comments 64 ‘Train Wrecks 98
i 17 Argum 43 Scary Noise 66 Hybrid: 99

Use Intention-Revealing Names 18 Argument Lists 43 Don’t Use a Comment When You Can Use a Hiding Structure 99
Avoid Disi 19 Verbs and Keyword: 43 Function or a Variable. 67 Data Transfer Object: 100
Make 20 Have No Side Effects 44 Position Marker 67 Active Record 101

U ame: 1 Output Arguments 45 Closing Brace Comment 67 Concl 101
Use Names 2 Command Query 45 Attributions and Byline: 6 ibli 101

Clean Cod

xit Contents
Classes Should Be Small! 136
The Single v Principl 138
Cohesion 140
Maintaining Cohesion Results in Many Small Classes 141
Organizing for Change 147
Isolating from Change 149

ibli 151
Chapter 11: Systems 153

How Would You Build a City?
Separate Constructing a System from Using It
Separation of Main

Factories

Dependency Injection

Sealing Up

Cross-Cutting Concerns
Java Proxie

Pure Java AOP Fi

Aspeets Aspects

Test Drive the System Arcl\i!euure"
Optimize Decision Mak
Use Standards Wisely, W hcn
%\\nm\ Vud L

hey Add Demonstrable Value
cific Language:

m bliography

(_hapler 12: Emergence

Chapter 13: Concurrency
‘Why C

Myths and

Contents i
Challenges 180
Concurrency Defense Principles .. 180

Single rinciple 181
Corollary: Limit the Scope of Data 181
Corollary: Use Copies of Data 181
Corollary: Threads Should Be as Independent as Possible 182
Know Your Libra 182
‘Thread-Safe Collection 182
Know Your Execution Models 183
Producer-Consumer. 184
Readers-Writers 184
Dining Philosophers ... 184
Beware Dependencies Between Synchronized Methods135
ep Sections Smal 185
Wn ing Correct Shut-Down Code Is Hard 186
“Testing Threaded Code 186
Treat Spurious Failures as Candidate Threading Issues 187
Get Your Nonthreaded Code Working First.... ..187
Make Your Threaded Code Pluggable 187
Make Your Threaded Code Tunable.............. 187
Run with More Threads Than Processors. 188
Run on Different Platform: 188
Instrument Your Code to Try and Force Failures 188
Hand-Coded 189
Automated 189
Conclusion. 190
ibli 191

Chapter 14: § 193

Args 194

How Did I Do This? 200
'he Rough Draft 201

So I Stopped 212
On 212
String Arg 214
Conclusion. 250

Contents

Chapter 15: JUnit Internals.... 251
‘The JUnit Framework 2
Conclusion 265

Chapter 16: Refactoring SerialDate . 267
First, Make It Work 26
‘Then Make It Right. 70
Conclusion 284
Bibliography 4

Chapter 17: Smells and Heuristics 285
Comments 286

C1: Inappropriate Information 286
C2: Obsolete Cor
3: Redundant Commen ... 286
C4: Poorly Written C 287
C5: Commented-Out Code 287
E1: Build Requires More Than One Step. 287
E2: Tests Require More Than One Step... 287
Function
F1: Too Many Argument: 2
F2: Output Arguments 288
F3: Flag Arguments 3
F4: Dead Function 2
General 288
G1: Muliiple Languages in One Source File. 288
G2: Obvious Behavior Is Unimplemented. 288
Incorrect Behavior at the Boundaries 289
Gd: Overridden Safetics...... 289
GS: Duplication 289
G6: Code at Wrong Level of Abstraction.. 290
G7: Base Classes Depending on Their Derivatives 291
G8: Too Much Information . U 291
G9: Dead Code 292
G10: Vertical Separation 292
Gll 92
G12: Clutter. 293

Contents v
G13: Ariificial Coupling 293
2 Feature Envy 293
5: Selector Arguments 294
Obscured Intent 9!
Misplaced 295
Static 296
G19: Use Explanatory Variabies . y 296
G20: Function Names Should Say What They Do 297
G21: Undersiand the Algorithm 297
G22: Make Logical Physical 98
3: Prefer Polymorphism to If/Else or Switch/Case 299
Follow Siandard Conventions 299
Replace Magic Numbers with Named Constants 300
Be Precise 301
ructure over Convention...... 301
: Encapsulate Condity 301
Avoid Negative Conditionals 302
Functions Should Do One Thing 302
Hidden Temporal Couplings 302
Don't Be Arbitrary 303
Encapsulate Boundary Conditions 304
Functions Should Descend Only
One Level of Abstraction 304
Keap Configurable Data at High Levels... 306
G36: Avoid Transitive Navigation 306
Java 07
J1: Avoid Long Import Lists by Using Wildeards 307
12: Don't Inherit Constants 307
13: Constants versus Enums 308
Names 309
N1: Choose Descriptive Names....... w309
N2: Choose Nanmes at the Appropriate Level of Abstraction.......311
N3: Use Standard Nomenclature Where Possible. 31
j e 312
Long Names for Long S(o[u\ 312
312
Should Describe Side 313

“Clean Code”0f| A &5

OOO

EY

NC SR

Clean Code

How to know?

C
ode Review

o
Al ‘ ol “‘ 'll
~ \\k ‘
L(\e O \‘\‘\\‘: S 7 B%‘;&
| (;;:\0‘ N <5
L(\e“‘q "’\\?&\e = «\ex\ "’Q
/096(> «\z@
< 6"’6\‘\0 |
< e
\ -
K- p
i \<° '

CR*'What?

v’ Codes do right things?
v’ Codes do things right?

CR:Why?

The most inexpensive way to certify codes

‘R'How?

v Look same code at same time
v Check logic and cleaness

CR:Where?

Same space can see code together

CR*'Who?

Every single team member

CR*When?

Everytime even a single line of code
added to the mainline

Not Easy to Follow

Code Analysis

Static / Semantic / Dynamic

Static Analsysis

Analyze syntax againt rules
not executing software

Software Product
Quality

l

Portability

Functional Reliability Performance Operability Security Compatibility || Maintainability
Suitability efficiency
I
Functional Maturity Time- Appropriateness || Confidentiality Co-existence Modularity
appropriateness || - Availability behaviour recognizability Integrity Interoperability [| Reusabillity
Accuracy Fault tolerance Resource Ease of use Non-repudiation Analyzability
Recoverability utilisation User error Accountability Modifiability
protection Authenticity Testability
User interface
aesthetics
Technical
learnability
Technical
accessibility

—
Adaptability
Installability

Replaceability

ISO/IEC 25010 SQuaRE (Systems and software Quality Requirements and Evaluation)

Difficult

v Different tools for different languages
v’ Analyze which are enhanced
v’ Share with others

(D

——

sonarqQube

Finallly on the stage

D.1

Lately released on April, 2015
Born in 2007

sonarqube Dashboards ~ Issues Rules Quality Prof Quality Gat More

Helicopter View

ALL PROJECTS ALL PROJECTS
SQALE Rating Technical Debt Ratio Size: Lines of code Color: SQALE Rating
8.2% 3 S
Technical Debt & N Apache Jeckash_. [
62,162d v 3 ostgreSQl
ALL PROJECTS
Apach.. | Caye..
Debt Issues O Blocker 83492 2 Nuxeo ECM Projects Wil Core Par
62,162d » 2,159,651 « O Critical 20346 e
@ Major 1648990 ¥
© Minor 331,795 w CPython
Inf
© Info 75028 A HBase
Jahia Project Ro.
FORGES
© Apache Closure Library Apache Tomcat
© Others

® Sourceforge
® Codehaus
o ow2

® 0PS4)

© GoogleCode

Only the first

0 components are displayed

Lines of code ALL PROJECTS

20154138 23% @ Linesof code: 12313121 @ Duplicated lines: 2.368518 @ Unit tests: 111,861

2010 2011 2012 2013 2014 2015

v’ Continuous inpection of code quality
v Fully-integrated web platform

v Easy integration to environment

v + FREE

©

OO

EY NC SA

Cl Contiuous Inspection

v Past/ Present/ Prediction/ Publication
v’ Technical debt
v Hitorical SQ visualization

sonarqube Dashboards v Issues Measures Rules Quality Profiles Quality Gates More v Login Q > ©
Helicopter View
ALL PROJECTS ALL PROJECTS

SQALE Rating Technical Debt Ratio Size: Lines of code Color: SQALE Rating

8.2% s
Technical Debt Lines Of Code mm
62162d % 12313K PostgreSQL
ALL PROJECTS
Debt Issues O Blocker 83492 A
= Nuxeo ECM Projects
62,162d 2,159,651 « © critical 20346 -

@ Major 1648990 v
© Minor 331,795 ™
© Info 75028 A HBase
FORGES
® Apache
® Others
® Sourceforge
® Codehaus Roslyn
® 0OwW2
® 0PS4J Only the first 100 components are displayed
© GoogleCode
Lines of code ALL PROJECTS
201541 38 239 @ Linesof code: 12,313,121 @ Duplicated lines: 2368518 @ Unit tests: 111,861
2010 2011 2012 2013 2014 2015
Technical Debt Pyramid M Technical Debt Total
Reusability 0 221d
Portability 0 221d
Maintainability I 120d 221d
Security 0 101d
Efficiency 2h 20min 101d

Changeability I 51d 100d
Reliability [38d 49d
Testability L] 10d 10d
e ———————

Fully-integrated

v’ Complete workflow
v Single web platform
v Various languages & rules

Analysis

©089

Easy Integration

v Continuous Integration®
v’ Widely used IDEs
v Various SCMs

LDAP YJIRA

Access Protocol g‘ "g REDMINE

m IE;]RTIFY
(¢ gradle I OpenID E

e Cl | pse Atlassian

o
0 27 ¢ Bamboo
Ccruise .

Matters to Testing

Clean code is also important for testing

Software

Life of a TE

Interviews with Googlers
and more

’ Help me test like Google ’ Life of an SET

“How Google Tests Software” 0| A 24| @

STE

Software Engineer in Test

v Focus on testability, test infra-structure
v’ Enhance quiality and test-coverage
v Make feature relate to quality

“How Google Tests Software”0f| A 2| @

For Testers

v’ APl documentation
v’ Module dependencies
v Test coverage

For Testers

v’ To make better quality software early
v To detect defects more early
v To do other than noarmal BBT

Demonstrations

Summary

v Clean codes = Culture & Habit
v’ SQ+Cl strongly support to enhance SQ
v Try it today :-)

REFERENCES

.Clean Code

A Handbook of Agile Software Craftmanship
Written by Robert C. Martin

.How Google Tests Software
Help to test loke google. Life of TE, Life of STE
Interviews with Googlers and more

Written by James Whittaker, Joson Arbon & Jeff Carollo

.SonarQube User Guide

http://www.sonarqube.org/documentations

D4 creatinov.kim@gmail.com
(83 www.creatinov.org
K3 https://www.facebook.com/groups/korea.sonarqube.user.group/

Thank you

S70SW7} E|ARIS THLFCH
1445-1539/20150429/%
ZHLhgCZAHIM 12F0LIO|A S

