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Code Quality

What is good code?



Bjarne Stroustrup

Inventor of C++ and author of The C++ Programming Language

I like my code to be elegant and efficient. The logic should be
straightforward to make it hard for bugs to hide, the
dependencies minimal to ease maintenance, error handling
complete according to an articulated strategy, and performance
close to optimal so as not to tempt people to make the code messy
with unprincipled optimizations. Clean code does one thing well.

You know you are working on clean code when each routine
you read turns out to be pretty much what you expected.
You can call it beautiful code when the code also makes it
look like the language was made for the problem.

Ward Cunningham

Inventor of Wiki/ Fit. Co-inventor of eXtreme Programming.
Motive force behind Design Patterns. Smalltalk and OO thought leader.
The godfatehr of all those who care about code
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Clean Code

How to know?
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CR*'What?

v’ Codes do right things?
v’ Codes do things right?



CR:Why?

The most inexpensive way to certify codes



‘R'How?

v  Look same code at same time
v Check logic and cleaness



CR:Where?

Same space can see code together



CR*'Who?

Every single team member



CR*When?

Everytime even a single line of code
added to the mainline



Not Easy to Follow




Code Analysis

Static / Semantic / Dynamic



Static Analsysis

Analyze syntax againt rules
not executing software



Software Product
Quality

l

Portability

Functional Reliability Performance Operability Security Compatibility || Maintainability
Suitability efficiency
I
Functional Maturity Time- Appropriateness || Confidentiality Co-existence Modularity
appropriateness || - Availability behaviour recognizability Integrity Interoperability [| Reusabillity
Accuracy Fault tolerance Resource Ease of use Non-repudiation Analyzability
Recoverability utilisation User error Accountability Modifiability
protection Authenticity Testability
User interface
aesthetics
Technical
learnability
Technical
accessibility

—
Adaptability
Installability

Replaceability

ISO/IEC 25010 SQuaRE (Systems and software Quality Requirements and Evaluation)




Difficult

v Different tools for different languages
v’ Analyze which are enhanced
v’ Share with others
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sonarqQube

Finallly on the stage



D.1

Lately released on April, 2015
Born in 2007
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Cl Contiuous Inspection

v Past/ Present/ Prediction/ Publication
v’ Technical debt
v Hitorical SQ visualization
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Fully-integrated

v’ Complete workflow
v Single web platform
v Various languages & rules



Analysis

©089



Easy Integration

v Continuous Integration®
v’ Widely used IDEs
v Various SCMs
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Matters to Testing

Clean code is also important for testing



Software

Life of a TE

Interviews with Googlers
and more

’ Help me test like Google ’ Life of an SET

“How Google Tests Software” 0| A 24| @



STE

Software Engineer in Test

v Focus on testability, test infra-structure
v’ Enhance quiality and test-coverage
v Make feature relate to quality

“How Google Tests Software”0f| A 2| @



For Testers

v’ APl documentation
v’ Module dependencies
v Test coverage



For Testers

v’ To make better quality software early
v To detect defects more early
v To do other than noarmal BBT



Demonstrations




Summary

v Clean codes = Culture & Habit
v’ SQ+Cl strongly support to enhance SQ
v Try it today :-)
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