Open Source Innovation by Open Standard and Open R&D

Yunjae Jung

Korea WG3 & OpenWisdom

Yokohama, Japan

Nov. 15th, 2018

Industrial Trend

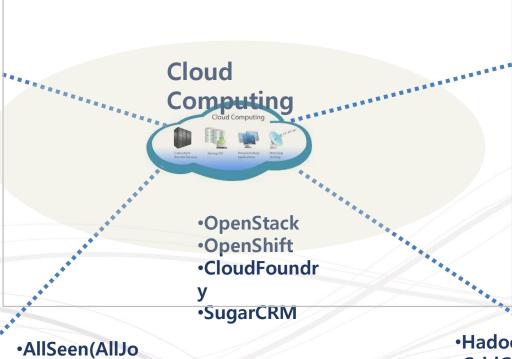
Al Deeplearning

- Caffe
- •H2O
- MLib
- Apache **Mahout**

yn)

·DSA

Eclipse


IoT(Kura)

•Macchina.io

Bug Labs

DeviceHive

IoT

Mobil

- •Converugo
- ForgeRock
- **•OCS NG**
- OpenMobs

ter

- **•WSO2**
- •APG

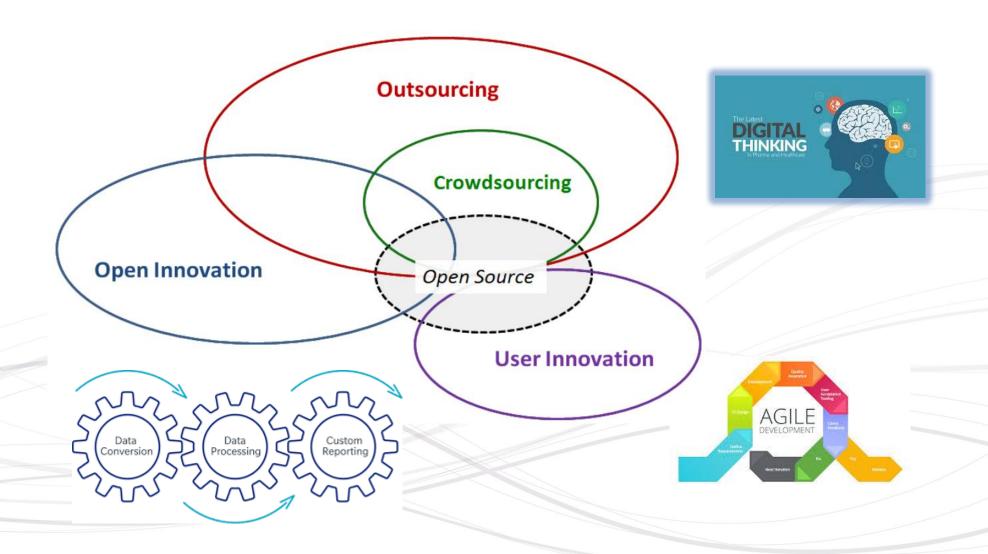
Big **Data**

Hadoop

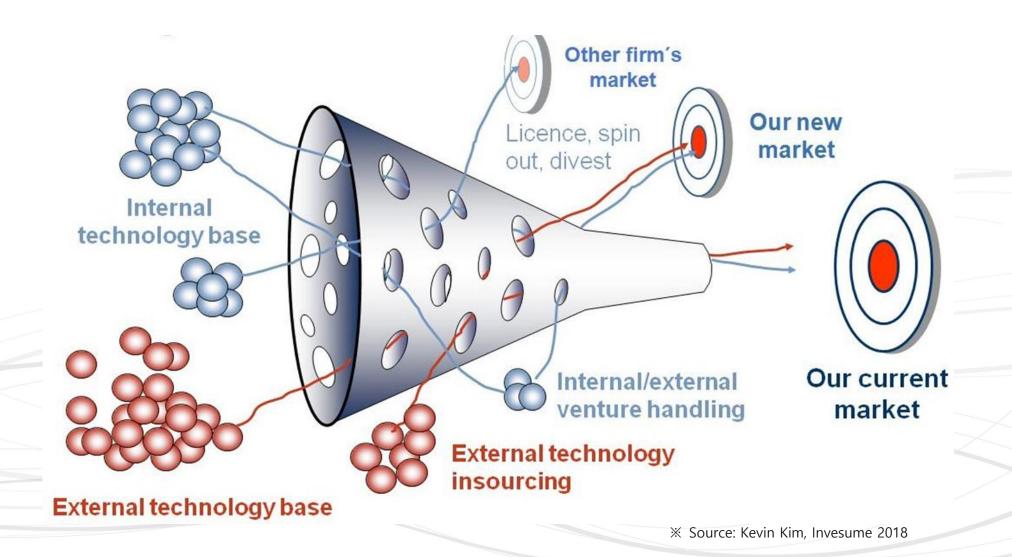
GridGrai

Cassand

ra


Terrasto

re


Contiki

·KNIME

Paradigm Shift

Open Innovation R&D

Government R&D Policy of Korea

Big Data

To improve the precision of big data predictive analytics, and establish a high quality big data database by 2022

As Is(2017)

- = Estimated Market size: 5.7 billion USD Number of professional experts:
- = Technology level compared to leading countries: 78.2%

To Be[2022]

- = Estimated Market size: 8.0 billion USD Number of professional experts:
- = Technology advancement compared to leading countries: 90%

Next Generation Communications

and IoT hyper-connection service by 2022

- 5G 91.4%, loT 81.0%
- Convergence service scenario discovery
- Number of IoT subscriptions (connected devices): approximately

Unveil and spread convergence services through commercialization of 5G

- Technology Competitiveness: 5G 99.7%, loT 85.0%
 - Convergence service demonstration Number of IoT subscriptions (connected devices): approximately

To Be(2022)

30 million

Autonomous (Driving) Vehicles

Actual Road Operation of Level 3* Autonomous Vehicles and Construction of Autonomous Transport Systems by 2020

*Autonomous Driving in Certain (Stable) Areas such as Highway, and Manual Driving in Unexpected (Unstable) Situations

As Is(2017)

■ Commercialization of Level 2 Autonomous Driving (Driver Assistance Functions of Lane Maintenance (Keeping), etc.)

To Be(2022)

Commercialization of Level 3 Autonomous Driving

Smart City

Solutions to Urban Problems

By 2022, a sustainable smart city platform and innovative model with intelligent technologies will be implemented to solve various urban problems.

As Is[2017]

■ Manage urban infrastructures in each city using ICT

To Be(2022)

Address various urban issues by utilizing city data

Innovative New Drugs

Development of 100 New Drug Candidates

Development of innovative new drugs through new drug candidate discovery and non-clinical/clinical studies

As Is(2017)

- = 85 new drug candidates
- To Be(2022) = 129 new drug candidates ■ Biohealth industry exports \$10 Billion 🛸 ■ Biohealth industry exports \$13 Billion
 - = 30% technological improvement in pharmaceutical production system

Drone (UAV: Unmanned Aerial Vehicle)

Technology development and commercialization of public and industrial drones

As Is[2017]

- = Domestic Commercial Drone Market
- Size: about 1.2 billion USD Technology Competitiveness:
- # No. of Domestic Commercial Drones: 3.500

To Be(2022)

- Domestic Commercial Drone Market Size: about 14 billion USD
- Technology Competitiveness: 6th = No. of Domestic Commercial Drones:

Virtual and Augmented Reality

Fusion of VR and AR with various indu

Elevating core technologies of VR/AR-fused contents/services/platforms/devices and accelerating the fusion of various industries (education, manufacturing, defense, etc.)

As Is[2017]

= 2 world-leading companies (Samsung Electronics, LG Electronics)

To Be(2022)

= Fostering more than 100 small and strong companies with over 10 million USD/year in sales

New and Renewable Energy

Increase renewable energy portion in the total amount of

Achieving 20% of total electricity generation by 2030

As Is(2017)

Renewable energy 7% of gross generation (2016)

To Be(2022)

■ Renewable energy 10.5% of gross generation

Artificial Intelligence

- Number of Al-specialized companies:
- 73.9% level of USA (2016)

Promptly overcoming the technological gap through the development and dissemination of Al core technologies, and strengthening technological competitiveness by securing the proprietary next-generation AI technologies

= Technological competitiveness:

Number of Al-specialized companies:

= Technological competitiveness 80% level of USA

Customized Healthcare

Personalized healthcare and precision medicine

Development and implementation of personalized healthcare and precision medicine systems, and ICT-based convergent medical devices by 2022

As Is(2017)

- = Partly data-based but mostly conventional healthcare services
- Seven medical devices with export sales over USD 100 million

To Be(2022)

- Implement an integrated healthcare system which is customized to
- individual medical, records Develop 30 new medical devices with export potential, and 12 medical. devices with export sales over USD 100 million

Intelligent Semiconductors

Acquire core technologies for AI semiconductors by 2022, including ultra low-power nano-scale devices and neuromorphic chips

ent of Al Semiconductor Devices

As Is(2017)

- Information society
- (system semiconductor) Global market share of 3%
- Fast execution, high density. functional reliability

To Be(2022)

- Intelligent Information society (intelligent semiconductor)
- = Global market share of 7% Super-intelligence, ultra-slim-lowpower, super-reliable

Source: Kevin Kim, Invesume 2018

Standardization Process

Preparation & Preprocessing

Modeling & Implementation

Standardization & Application

Information Collection

Case Study

Requirement Analysis

Specification Definition

Framework Construction

Standard Design

Official Standardization

On-site Application

Feedback Reflection

Official Amendment

Standardization in Korea

Community

Industry

Government

Standardization & Application

Linux Foundation

TTA PG602

NEA OSSPF WG3

Modeling & Implementation

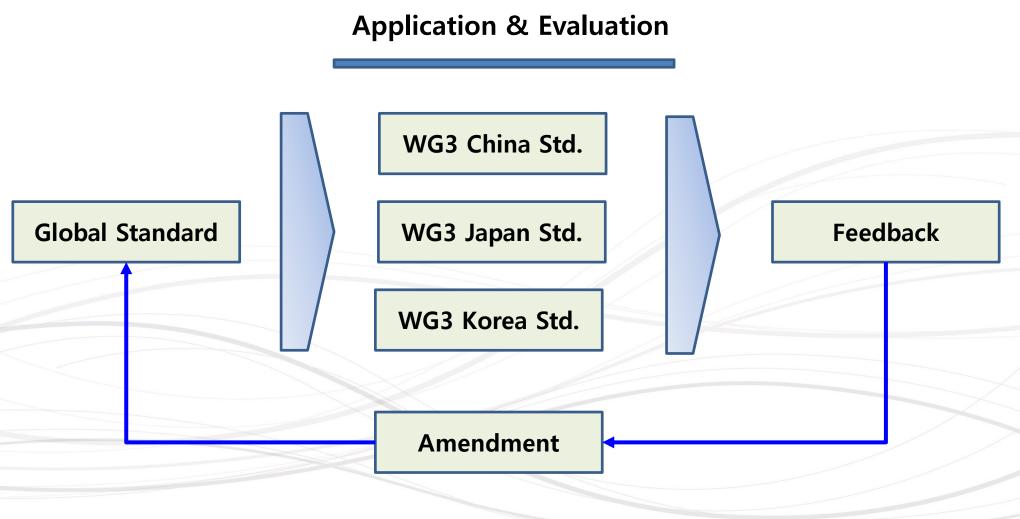
OSSEC
Kim & Chang
Lee & Ko

BDSK Invesume OpenWisdom

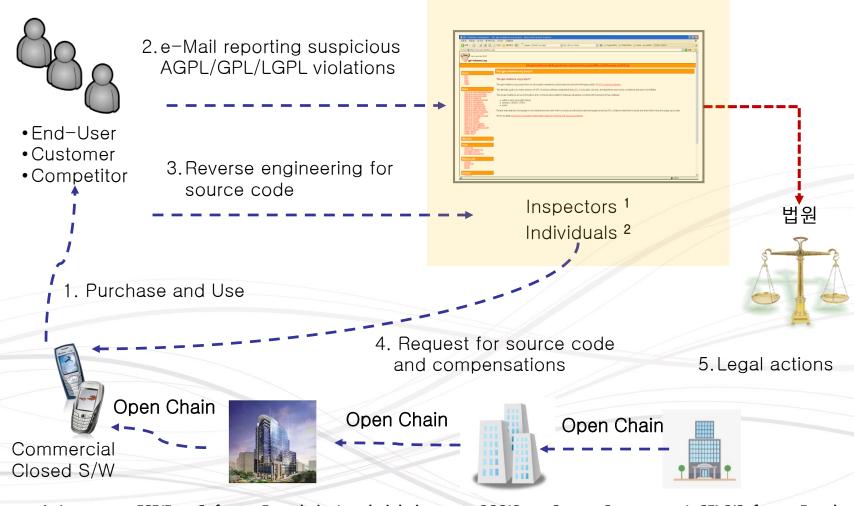
> ETRI KTDS

LG Rock Place SEC

SK

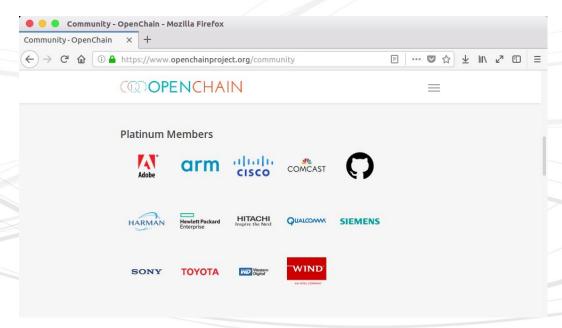

IITP KCC OSSCP

Preparation & Preprocessing


KOSSA KOSSPA KOSSLC KOSSF

Road Map

Standardization for S/W Supply Chain



- 1. Inspectors: FSF(Free Software Foundation), gpl-violations.org, OSC(Open Source Conservancy), SFLC(Software Freedom Law Center)
- 2. Individuals: Personal beneficiaries by Open Source Software copyright trials

Introduction to OpenChain

- OpenChain is a project under the Linux Foundation, was founded in 2013 led by Qualcomm.
- The purpose is to spread OSS compliance for the software supply chain and to standardize it.
- Intellectual property department and OSS support department participate from member companies.

https://www.openchainproject.org/

Proposal for License Policy Establishment Model per each business and solution

Business Model Analysis and Policy Definition

- Categorization for business model types developed for OSS usage and commercialization계
- Profit Model Types and Extraction Process
- Source Code Distribution and Community Collaboration per each license

License Policy Definition / Representative License (Default License) Selection

- Establishment for License Policy based on Business model and Policy (Copy Left, Permissive, Dual License etc.)
- · Representative OSS license selection process applied for projects and solutions

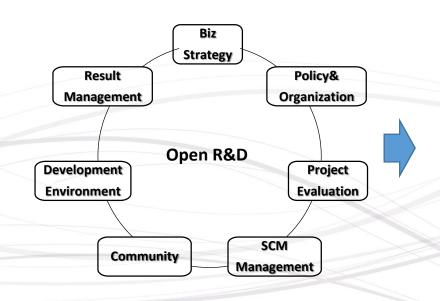
Candidate Group for Compatible License

Selection and proposal process for OSS candidate group compatible with representative license

Establish and Operation of Community Compliance Policy

- Establishing process of compliance board and process for community management by OSS license policy
- · Distribution of license policy and compliance guide and proposal for essential requirement

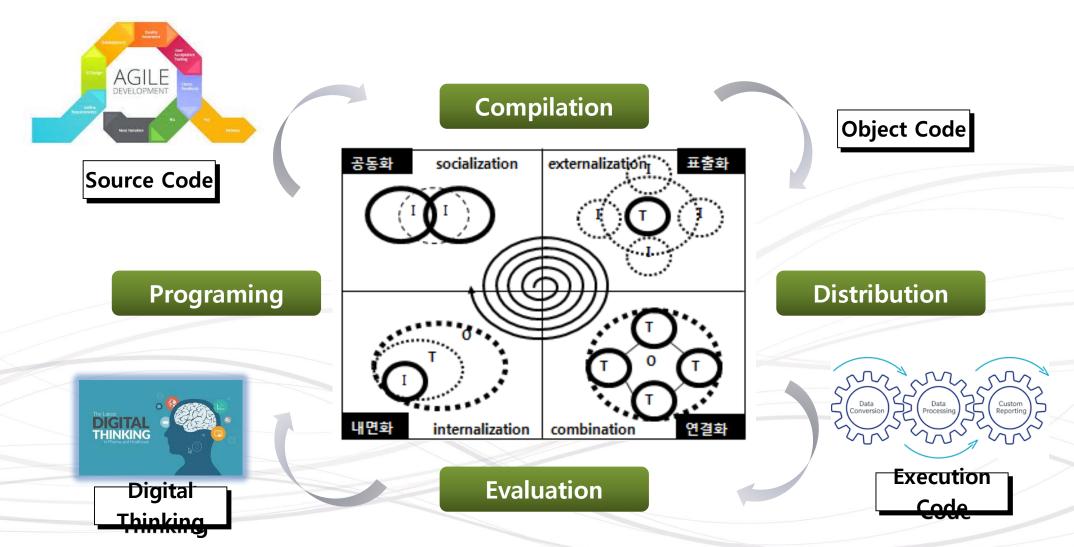
Step.1 Step.2 Step.3 Step.4


※ source: Brian Kim, BDSK 2018

Competency Maturity Evaluation Model

- Competency Maturity Evaluation Model for OSS-based Open Innovative R&D Projects
- Urgent needs from government for managing and improving R&D activities by evaluating maturity
 of project execution organizations and external participants

Composed of capability maturity level, maturity model process applied domain, detailed grading


criteria per each domain

Phase 1	No recognition of problems.
Initial	No Standard processes
Phase 2 Definition	Standard steps and formal documents Proliferation by training Compliance according to personal levels
Phase 3	Monitoring compliance by formal process
Management	Examination and resolution
Phase 4	Enterprise level standard process
Proliferation	Examination and resolution for organizations actions
Phase 5	Consistent improvement
Optimization	Agile response for internal and external changes

Open Knowledge Management

Thank You